Statistics
| Revision:

svn-gvsig-desktop / tags / v1_9_Build_1246 / libraries / libjni-proj4 / src / PJ_tpeqd.c @ 33782

History | View | Annotate | Download (2.48 KB)

1
#ifndef lint
2
static const char SCCSID[]="@(#)PJ_tpeqd.c        4.1        94/02/15        GIE        REL";
3
#endif
4
#define PROJ_PARMS__ \
5
        double cp1, sp1, cp2, sp2, ccs, cs, sc, r2z0, z02, dlam2; \
6
        double hz0, thz0, rhshz0, ca, sa, lp, lamc;
7
#define PJ_LIB__
8
#include        <projects.h>
9
PROJ_HEAD(tpeqd, "Two Point Equidistant")
10
        "\n\tMisc Sph\n\tlat_1= lon_1= lat_2= lon_2=";
11
FORWARD(s_forward); /* sphere */
12
        double t, z1, z2, dl1, dl2, sp, cp;
13

    
14
        sp = sin(lp.phi);
15
        cp = cos(lp.phi);
16
        z1 = aacos(P->sp1 * sp + P->cp1 * cp * cos(dl1 = lp.lam + P->dlam2));
17
        z2 = aacos(P->sp2 * sp + P->cp2 * cp * cos(dl2 = lp.lam - P->dlam2));
18
        z1 *= z1;
19
        z2 *= z2;
20
        xy.x = P->r2z0 * (t = z1 - z2);
21
        t = P->z02 - t;
22
        xy.y = P->r2z0 * asqrt(4. * P->z02 * z2 - t * t);
23
        if ((P->ccs * sp - cp * (P->cs * sin(dl1) - P->sc * sin(dl2))) < 0.)
24
                xy.y = -xy.y;
25
        return xy;
26
}
27
INVERSE(s_inverse); /* sphere */
28
        double cz1, cz2, s, d, cp, sp;
29

    
30
        cz1 = cos(hypot(xy.y, xy.x + P->hz0));
31
        cz2 = cos(hypot(xy.y, xy.x - P->hz0));
32
        s = cz1 + cz2;
33
        d = cz1 - cz2;
34
        lp.lam = - atan2(d, (s * P->thz0));
35
        lp.phi = aacos(hypot(P->thz0 * s, d) * P->rhshz0);
36
        if ( xy.y < 0. )
37
                lp.phi = - lp.phi;
38
        /* lam--phi now in system relative to P1--P2 base equator */
39
        sp = sin(lp.phi);
40
        cp = cos(lp.phi);
41
        lp.phi = aasin(P->sa * sp + P->ca * cp * (s = cos(lp.lam -= P->lp)));
42
        lp.lam = atan2(cp * sin(lp.lam), P->sa * cp * s - P->ca * sp) + P->lamc;
43
        return lp;
44
}
45
FREEUP; if (P) pj_dalloc(P); }
46
ENTRY0(tpeqd)
47
        double lam_1, lam_2, phi_1, phi_2, A12, pp;
48

    
49
        /* get control point locations */
50
        phi_1 = pj_param(P->params, "rlat_1").f;
51
        lam_1 = pj_param(P->params, "rlon_1").f;
52
        phi_2 = pj_param(P->params, "rlat_2").f;
53
        lam_2 = pj_param(P->params, "rlon_2").f;
54
        if (phi_1 == phi_2 && lam_1 == lam_2) E_ERROR(-25);
55
        P->lam0 = adjlon(0.5 * (lam_1 + lam_2));
56
        P->dlam2 = adjlon(lam_2 - lam_1);
57
        P->cp1 = cos(phi_1);
58
        P->cp2 = cos(phi_2);
59
        P->sp1 = sin(phi_1);
60
        P->sp2 = sin(phi_2);
61
        P->cs = P->cp1 * P->sp2;
62
        P->sc = P->sp1 * P->cp2;
63
        P->ccs = P->cp1 * P->cp2 * sin(P->dlam2);
64
        P->z02 = aacos(P->sp1 * P->sp2 + P->cp1 * P->cp2 * cos(P->dlam2));
65
        P->hz0 = .5 * P->z02;
66
        A12 = atan2(P->cp2 * sin(P->dlam2),
67
                P->cp1 * P->sp2 - P->sp1 * P->cp2 * cos(P->dlam2));
68
        P->ca = cos(pp = aasin(P->cp1 * sin(A12)));
69
        P->sa = sin(pp);
70
        P->lp = adjlon(atan2(P->cp1 * cos(A12), P->sp1) - P->hz0);
71
        P->dlam2 *= .5;
72
        P->lamc = HALFPI - atan2(sin(A12) * P->sp1, cos(A12)) - P->dlam2;
73
        P->thz0 = tan(P->hz0);
74
        P->rhshz0 = .5 / sin(P->hz0);
75
        P->r2z0 = 0.5 / P->z02;
76
        P->z02 *= P->z02;
77
        P->inv = s_inverse; P->fwd = s_forward;
78
        P->es = 0.;
79
ENDENTRY(P)