
IzPack documentation

http://www.izforge.com/izpack/

Edition of April 22, 2005

Copyright c© 2001-2004

• Julien Ponge <julien@izforge.com>

• Elmar Grom <elmar@grom.net>

• Tino Schwarze <tino.schwarze@informatik.tu-chemnitz.de>

• Klaus Bartz <klaus.bartz@coi.de>

This documentation is licensed under the terms of the Commons Creative
Attribution-NonCommercial-ShareAlike license version 1.0. You can use it
and modify it under certain conditions. See page 110 for the legal terms.

http://www.izforge.com/izpack/
http://www.izforge.com/izpack/
http://www.izforge.com/izpack/
mailto:julien@izforge.com
mailto:elmar@grom.net
mailto:tino.schwarze@informatik.tu-chemnitz.de
mailto:klaus.bartz@coi.de


Contents

1 Getting started 11
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 First Compilation . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 The IzPack Architecture . . . . . . . . . . . . . . . . . . . . 12

1.3.1 The Compilation System . . . . . . . . . . . . . . . . . 12
1.3.2 How an Installer Works . . . . . . . . . . . . . . . . . . 13
1.3.3 The Different Kinds of Installers . . . . . . . . . . . . . 14
1.3.4 Installers for older VM Versions . . . . . . . . . . . . . 14

2 Writing Installation XML Files 16
2.1 What You Need . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.1 Your editor . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.2 Writing XML . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Variable Substitution . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.1 The Built-In Variables . . . . . . . . . . . . . . . . . . 18
2.2.2 Environment Variables . . . . . . . . . . . . . . . . . . 18
2.2.3 Parse Types . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 The IzPack Elements . . . . . . . . . . . . . . . . . . . . . . 19
2.3.1 The Root Element <installation> . . . . . . . . . . . 19
2.3.2 The Information Element <info> . . . . . . . . . . . . 19
2.3.3 The Variables Element <variables> . . . . . . . . . . 21
2.3.4 The GUI Preferences Element <guiprefs> . . . . . . . 21
2.3.5 The Localization Element <locale> . . . . . . . . . . . 23
2.3.6 The Resources Element <resources> . . . . . . . . . . 24
2.3.7 The Panels Element <panels> . . . . . . . . . . . . . . 25
2.3.8 The Packs Element <packs> . . . . . . . . . . . . . . . 26

Internationalization of the PacksPanel . . . . . . . . . 26
<description> - pack description . . . . . . . . . . . . 27
<depends> - pack dependencies . . . . . . . . . . . . . 27
<os> - OS restrictions . . . . . . . . . . . . . . . . . . 27
<updatecheck> . . . . . . . . . . . . . . . . . . . . . . 27

1



<file> - add files or directories . . . . . . . . . . . . . 28
<additionaldata> . . . . . . . . . . . . . . . . 28

<singlefile> - add a single file . . . . . . . . . . . . . 28
<fileset>: add a fileset . . . . . . . . . . . . . . . . . 29
<parsable> - parse a file after installation . . . . . . . 30
<executable> - mark file executable or execute it . . . 30
<os> - make a file OS-dependent . . . . . . . . . . . . 31

2.3.9 The Native Element <native> . . . . . . . . . . . . . . 32
<os> - make a library OS-dependent . . . . . . . . . . 33

2.3.10 The Jar Merging Element <jar> . . . . . . . . . . . . . 33
2.4 The Available Panels . . . . . . . . . . . . . . . . . . . . . . . 33

2.4.1 HelloPanel . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4.2 InfoPanel and HTMLInfoPanel . . . . . . . . . . . . . 34
2.4.3 LicencePanel and HTMLLicencePanel . . . . . . . . . . 34
2.4.4 PacksPanel . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4.5 ImgPacksPanel . . . . . . . . . . . . . . . . . . . . . . 34
2.4.6 TargetPanel . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4.7 InstallPanel . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4.8 XInfoPanel . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4.9 FinishPanel . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4.10 SimpleFinishPanel . . . . . . . . . . . . . . . . . . . . 35
2.4.11 ShortcutPanel . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.12 UserInputPanel . . . . . . . . . . . . . . . . . . . . . . 36
2.4.13 CompilePanel . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.14 ProcessPanel . . . . . . . . . . . . . . . . . . . . . . . 37
2.4.15 JDKPathPanel . . . . . . . . . . . . . . . . . . . . . . 39

3 Advanced Features 41
3.1 Ant Integration . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 System properties as variable . . . . . . . . . . . . . . . . . . 42
3.3 Automated Installers . . . . . . . . . . . . . . . . . . . . . . . 42
3.4 Picture on the Language Selection Dialog . . . . . . . . . . . . 43
3.5 Picture in the installer . . . . . . . . . . . . . . . . . . . . . . 43
3.6 Web Installers . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.7 More Internationalization . . . . . . . . . . . . . . . . . . . . 44

3.7.1 Special resources . . . . . . . . . . . . . . . . . . . . . 44
3.7.2 Packs . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2



4 Desktop Shortcuts 46
4.1 Defining Shortcuts . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 46
4.1.2 What to Add to the Installer . . . . . . . . . . . . . . 47
4.1.3 Why Native Code to do the Job on Windows? . . . . . 49
4.1.4 The Shortcut Specification . . . . . . . . . . . . . . . . 50
4.1.5 Shortcut Attributes . . . . . . . . . . . . . . . . . . . . 52

Unix specific shortcut attributes . . . . . . . . . . . . 55
4.1.6 Selective Creation of Shortcuts . . . . . . . . . . . . . 56
4.1.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Shortcut Tips . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2.1 The Desktop . . . . . . . . . . . . . . . . . . . . . . . 58
4.2.2 Icons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2.3 Targets . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2.4 Command Line . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Trouble Shooting . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3.1 Problems You Can Solve . . . . . . . . . . . . . . . . . 63
4.3.2 Problems That Have No Solution (yet) . . . . . . . . . 65
4.3.3 A sample shortcut specification file for Unix . . . . . . 65

5 Creating Your Own Panels 68
5.1 How It Works . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1.1 What You Need . . . . . . . . . . . . . . . . . . . . . . 68
5.1.2 What You Have To Do . . . . . . . . . . . . . . . . . . 68

5.2 The IzPanel Class . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2.1 UML Diagram . . . . . . . . . . . . . . . . . . . . . . . 69
5.2.2 Description . . . . . . . . . . . . . . . . . . . . . . . . 69

6 User Input 71
6.1 The Basic XML Structure . . . . . . . . . . . . . . . . . . . . 73
6.2 Concepts and XML Elements Common to All Fields . . . . . . 73
6.3 Internationalization . . . . . . . . . . . . . . . . . . . . . . . . 75
6.4 Panel Title . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.5 Static Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.6 Visual Separation . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.7 Text Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.8 Radio Buttons . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.9 Combo Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.10 Check Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.11 Rule Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.11.1 Layout and Input Rules . . . . . . . . . . . . . . . . . 82

3



6.11.2 Setting Field Content . . . . . . . . . . . . . . . . . . . 85
6.11.3 The Output Format . . . . . . . . . . . . . . . . . . . 85
6.11.4 Validating the Field Content . . . . . . . . . . . . . . . 86

NotEmptyValidator . . . . . . . . . . . . . . . . . . . . 86
RegularExpressionValidator . . . . . . . . . . . . . . . 86
Creation Your Own Custom Validator . . . . . . . . . 87

6.11.5 Processing the Field Content . . . . . . . . . . . . . . . 87
6.11.6 Summary Example . . . . . . . . . . . . . . . . . . . . 87

6.12 Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.12.1 Specification . . . . . . . . . . . . . . . . . . . . . . . . 88
6.12.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7 Custom Actions 90
7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.2 How It Works . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.2.1 Custom Action Types . . . . . . . . . . . . . . . . . . 91
Custom Actions At Packaging . . . . . . . . . . . . . . 92

UML Diagram . . . . . . . . . . . . . . . . . . . 92
Description . . . . . . . . . . . . . . . . . . . . 92

Custom Actions At Installing Time . . . . . . . . . . . 92
UML Diagram . . . . . . . . . . . . . . . . . . . 92
Description . . . . . . . . . . . . . . . . . . . . 93

Custom Actions At Uninstalling Time . . . . . . . . . 94
UML Diagram . . . . . . . . . . . . . . . . . . . 94
Description . . . . . . . . . . . . . . . . . . . . 94

7.2.2 Package Path . . . . . . . . . . . . . . . . . . . . . . . 95
7.2.3 Correlated Stuff . . . . . . . . . . . . . . . . . . . . . . 95

Native Libraries for Uninstallation . . . . . . . . . . . 95
7.3 What You Have To Do . . . . . . . . . . . . . . . . . . . . . . 95

7.3.1 Custom Actions at Packaging (CompilerListener) . . . 96
7.3.2 Custom Actions at Installation Time (InstallerListener) 96
7.3.3 Custom Actions at Uninstallation Time (UninstallerLis-

tener) . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.5 Ant Actions (InstallerListener and UninstallerListener) . . . . 97

7.5.1 The Basic XML Struture . . . . . . . . . . . . . . . . . 99
<property>: define a property . . . . . . . . . . . . . . 100
<propertyfile>: define properties in a file . . . . . . . 100
<target>: target to call at installation . . . . . . . . . 101
<uninstall target>: target to call on uninstallation . 101

4



A The GNU General Public License 102

B The Commons Creative Attribution-NonCommercial-ShareAlike
License 110

5



Introduction

Welcome to IzPack !

IzPack is a tool that will help you to solve
your software installation problems. It is a JavaTM based software installer
builder that will run on any operating system coming with a Java Virtual
Machine (JVM) that is compliant with the Sun JVM 1.2 or higher. Its de-
sign is very modular and you will be able to choose how you want your
installer to look and you will also be able to customize it using a very simple
Application Programming Interface (API). Although IzPack is essentially a
JavaTM only application (it can run on virtually any operating system), it
can interact in a clean way with the underlying operating system. Native
code can interact with it on a specific platform without disturbing the op-
eration on incompatible operating systems. For instance, you can develop
Unix-specific code that will be silent if run on Windows. To put it in a nut-
shell, whereas most of the other JavaTM installers force you to go their way,
IzPack will let you go your way. Some respectable companies have been

6



using it in order to produce customized installers for their very specific needs.

”So, if it’s so good, how much is it ?” : well, you can get it for free. BUT
IzPack is not a freeware. It’s not free as in ”free beer” but ”free as in free
speech”. So it’s neither freeware nor public domain. It is software covered by
the GNU General Public License (GPL). It uses the tactic of copyleft
: to make it short, you can use it, modify it and redistribute it freely but
you must also make your modifications available to everyone whenever you
publish a modified version of a copylefted software. You have access to the Iz-
Pack source code and you can modify it to make it suit your needs, but if you
publish such a modified version, you are forced to publish the modifications
you’ve made. That’s a fair exchange of expertise and work. To learn more
about the GPL license and the copyleft principles, visit http://www.gnu.org/.

The Features

IzPack uses XML files to describe installations. When you make an installer,
you have a choice of panels. You can see panels as a kind of plugin that
composes the installer. For instance, a panel can choose the installation
path, the packs to install, prompt the user for a license agreement and so on.
This approach is very modular. You can also create your own panels if you
have specific needs. In some cases you even have a choice from multiple panel
versions for the same task. You can also choose the order in which panels
appear during the installation process. IzPack can be used in a number of
different ways:

• by writing the XML installation file ”by hand” and compiling it with
the command line compiler

• by invoking the compiler from the great Apache Jakarta Ant tool
(see http://jakarta.apache.org/) as IzPack can be used as a task
for Ant

Here is a brief (and certainly incomplete !) list of the main IzPack
features :

• XML based installation files

• easy internationalization using XML files (10 translations are already
available)

7

http://www.gnu.org/
http://jakarta.apache.org/


• Ant integration, command-line compiler

• easy customization with the panels and a rich API (even an XML parser
is included !)

• powerful variable substitution system that you can use to customize
scripts and more generally any text-based file

• different kinds of installers (standard, web-based, ...)

• launching of external executables during the installation process and
Unix executable flag support (useful for the scripts for instance)

• layout of the installation files in packs (some can be optional)

• native code integration facilities

• jar files nesting support

• ... more things to discover and create !.

The Development

I started writing IzPack in April 2001 and many people have helped me
improving it since. I prefer not to mention them here as I would for sure
forget some of them, so please check the file named Thanks.txt which I try
to get as up-to-date as possible in order to mention everyone who helped
me. As far as I’m concerned, I’m a french student and I rather see this as
a fun activity in my free time where I can learn a lot of great things. The
contributors to the project are both individuals and companies. Help can
take any form :

• translations

• new features and various fixes

• bug fixes

• writing manuals

• ... anything else you like :-)

8



The official IzPack homepage is located at http://www.izforge.com/izpack/.
The IzPack developer services (mailing-lists, CVS, patches manager, bugs
tracker, ...) are generously hosted by BerliOS. The IzPack BerliOS section
is located at http://developer.berlios.de/projects/izpack/. Feel free
to use these services. In particular, there are two mailing-lists:

• izpack-devel: used for the IzPack development

• izpack-users: general users lounge, great to get some help with Iz-
Pack.

3rd party code used in IzPack

IzPack uses several 3rd party libraries and I would like to mention them in
respect for their respective authors work :

• NanoXML by Marc De Scheemaecker : the XML parser used inside
IzPack and released under a zlib/png-style license - see
http://nanoxml.sourceforge.net/ -

• Kunststoff Look and Feel by Incors Gmbh : a SwingTM Look and Feel
that can be used for installers. It really looks good and is released
under the GNU Lesser General Public License (LGPL) - see
http://www.incors.org/ -

• Crystal-SVG Icons : the icons used in IzPack come from the great
work of Everaldo (http://www.everaldo.com/) that makes KDE 3.2
look so sweet

• Some Apache Jakarta classes and libraries : released under the Apache
License

• Metouia Look and Feel by Taoufik Romdhane : released under the
LGPL license - see http://mlf.sf.net/

• Liquid Look and Feel by Miroslav Lazarevic : released under the LGPL
license - see liquidlnf.sf.net/

• JGoodies Looks by Karsten Lentzsch : released under a BSD-style li-
cense - see http://looks.dev.java.net/.

9

http://www.izforge.com/izpack/
http://developer.berlios.de/projects/izpack/
http://nanoxml.sourceforge.net/
http://www.incors.org/
http://www.everaldo.com/
http://mlf.sf.net/
liquidlnf.sf.net/
http://looks.dev.java.net/


So, now let’s dive into understanding how IzPack works. You’ll be sur-
prised to see how powerful and simple it can be :-)

10



Chapter 1

Getting started

1.1 Overview

To begin with, you should know what IzPack is organized if you want to
use it. Let’s go into the directory where you have installed IzPack on your
machine. There are 3 text files and a set of directories. The most important
for the moment are bin/ doc/ sample/. If you are reading this, you already
know that doc contains this documentation :-)

So let’s go into bin/. The icons/ directory contains some directories
for your system, in case you would like an icon to launch a component of
IzPack . But the most important things you can see in bin are the compile
scripts (in both Unix* and Windows formats). compile is used to compile
a ready-to-go XML installation file from a command-line context or from an
external tool.

Note : these scripts can be launched from anywhere on your system as the in-
staller has customized these scripts so that they can inform IzPack of where
it is located.

1.2 First Compilation

Now you probably can’t wait to build your first installer. So go on open
a command-line shell and navigate to sample/. The following should work
on both Unix* and Windows systems. For the latter, just change the path
separator (slash ’/’) to a backslash. So type ($ is your shell prompt !) :

$ ../bin/compile install.xml -b . -o install.jar -k standard

11



(installer generation text output here)

$ java -jar install.jar

There you are! The first command has produced the installer and the
second one did launch it.

1.3 The IzPack Architecture

Now that you have packaged your first installer, it’s time for you to under-
stand how the whole thing works.

1.3.1 The Compilation System

The compilation system (see figure 1.1) is quite modular. Indeed, you can
use the compiler in 2 ways :

• from a command-line

• from Jakarta Ant

The compiler takes as its input an XML installation file that describes
(at a relatively high-level) the installation. This file contains detailed infor-
mation such as the application name, the authors, the files to install, the
panels to use, which resources to load and much more (see figure 1.2).

The compiler can generate different kinds of installers, but this informa-
tion is not located inside the XML file as it is not were it should be. On the
contrary, this is a compiler parameter.

The compilation options for a command-line installer are the following:

• -?: gives a list of the available options.

• -b: specifies the base path, ie the one that will be used to resolve the
relative paths. If your XML file contains absolute paths, specify it to
an empty string (-b "").

• -k: specifies the installer kind, for instance most users will want standard
here.

• -o: specifies the resulting installer Jar file name.

12



Figure 1.1: The compiler architecture.

Compiler

XML Installation
File

Installer
jar file

Command-line

GUI frontend

Ant task

1.3.2 How an Installer Works

An installer presents its panels to the end-user. For instance, there is one to
select the packages, one to prompt for the license agreement, one to select
the installation path and so on. You have a choice from a variety of panels
to place in the installer. For example, you can choose between a plain text
and a HTML text panel for the license agreement. Also, if you don’t want
of the HelloPanel, you just don’t include it.

It is very important to understand that some of the panels may need ex-
tra data. For instance, the license agreement panel needs the license text. A
simple approach to specify such data would have been to add as many XML
tags as needed for each panel. However, this makes the XML file too specific
and not easy to maintain. The approach that has been chosen is to put the
data in files and we call these files resource files. They are specified with a
unique XML tag. This is a much cleaner approach.

You might wonder how your files are packaged. They can be grouped in
packs. For instance, you can have one pack for the core files, one for the doc-
umentation, one for the source code and so on. In this way, your end-users

13



Figure 1.2: The installer architecture.

Installer jar file

HelloPanel

LicencePanel

ImgPacksPanel

InstallPanel

(...)

License text

Picture for pack #1

Picture for pack #2

(..)

The panels showed
to the end user

The resources needed
by the panels

will have the choice to install a pack or not (provided that the pack they
don’t want to install is not mandatory). Inside the jar file (which is a zip
file), a sub directory contains the pack files. Each pack file contains the files
that are part of it. Could we do it simpler ? :-)

1.3.3 The Different Kinds of Installers

There are 2 kinds of installers available :

• standard : a single-file ready-to-run installer

• web : a web based installer (pack data is located on an HTTP server,
and the installer retrieves it at install time (see section 3.6))

1.3.4 Installers for older VM Versions

For default the installer will be made for the current most used version of
the java runtime environment. It is possible to create an installation that is

14



runable with an older VM version.
What version is used can be detected in the Ant properties file that is used
to build IzPack. It is [IzPackRoot]/src/ant.properties. The value of the
property ”source” determines the VM version.
If compatibility to older versions is needed, a recompilation of the jar files of
the IzPack system should be done. For this the sources of IzPack and an Ant
installation are needed. The sources of IzPack are selectable at installation
time of IzPack. Before a recompilation of all can be triggered, the version
of byte code should be changed. This can be done simple by changing the
”source” entry in [IzPackRoot]/src/ant.properties to the needed value.
The recompilation should be performed with the current most used VM ver-
sion because there are classes of it referenced in the IzPack code. Usage of
an older VM version at installation time will be possible because the classes
of the newer VM version are only used after a VM version check. Of course,
some features of IzPack will be missing at using an old VM version. To re-
compile IzPack go into [IzPackRoot]/src. Use a current JDK (not JRE)
for this. Call

ant clean

followed by

ant all

Then all jar files in [IzPackRoot]/lib, [IzPackRoot]/bin/panels and
[IzPackRoot]/bin/customActions should be recompiled with the selected
source version.

15



Chapter 2

Writing Installation XML Files

2.1 What You Need

2.1.1 Your editor

In order to write your XML installation files, you just need a plain text
editor. Of course it’s always easier to work with color coded text, so you
might rather want to work with a text editor having such a feature. Here is
a list of free editors that work well :

• Jext : http://www.jext.org/

• JEdit : http://www.jedit.org/

• classics like Vim and (X)Emacs.

2.1.2 Writing XML

Though you might not know much about XML, you have certainly heard
about it. If you know XML you can skip this subsection as we will briefly
present how to use XML.

XML is a markup language, really close to HTML. If you’ve ever worked
with HTML the transition will be fast. However there are a few little things
to know. The markups used in XML have the following form : <markup>.
Each markup has to be closed somewhere with its ending tag : </markup>.
Each tag can contain text and other markups. If a markup does not contain
anything, it is just reported once : <markup/>. A markup can contain at-
tributes like : <markup attr1="123" attr2="hello !"/>. Here is a sample
of a valid XML structure :

16

http://www.jext.org/
http://www.jedit.org/


<chapter title="Chapter 1">
<section name="Introduction">
<paragraph>
This is the text of the paragraph number 1. It is available for the very low
price of <price currency="dollar">1 000 000</price>.
</paragraph>

</section>
<section name="xxx">
xxx
</section>

</chapter>

You should be aware of the following common mistakes :

• markups are case sensitive : <markup> is different from <Markup>.

• you must close the markups in the same order as you create them :
<m1><m2>(...)</m2></m1> is right but <m1><m2>(...)</m1></m2> is
not.

Also, an XML file must start with the following header :
<?xml version="1.0" encoding="iso-8859-1 standalone="yes" ?>. The
only thing you should modify is the encoding (put here the one your text
editor saves your files to). The standalone attribute is not very important
for us.

This (brief !) introduction to XML was just meant to enable you to write
your installation specification. For a better introduction there are plenty
of books and articles/tutorials dealing with XML on the Internet, in book
stores, in magazines and so on.

2.2 Variable Substitution

During the installation process IzPack can substitute variables in various
places with real values. Obvious targets for variable substitution are re-
source files and launch scripts, however you will notice many more places
where it is more powerful to use variables rather then hard coded values.
Wherever variables can be used it will be explained in the documentation.

There are three types of variables:

• Built-In variables. These are implemented in IzPack and are all dy-
namic in nature. This means that the value of each variable depends
on local conditions on the target system.

17



• Environment variables. These are provided by the operating system
the installer is run on.

• Variables that you can define. You also define the value, which is fixed
for a given installation file.

You define your own variables in the installation XML file with the
<variable> tag. How to do this is explained in detail later in this chap-
ter.

Please note that when using variables they must always appear with a
’$’ sign as the first character, even though they are not defined this way.

2.2.1 The Built-In Variables

The following variables are built-in :

• $INSTALL PATH : the installation path on the target system, as chosen
by the user

• $JAVA HOME : the JavaTM virtual machine home path

• $USER HOME : the user’s home directory path

• $USER NAME : the user name

• $APP NAME : the application name

• $APP URL : the application URL

• $APP VER : the application version

• $ISO3 LANG : the ISO3 language code of the selected langpack.

• $FILE SEPARATOR : the file separator on the installation system

2.2.2 Environment Variables

Environment variables can be accessed via the syntax ${ENV[variable]}.
The curly braces are mandatory. Note that variable names are case-sensitive
and usually in UPPER CASE.

Example: To get the value of the OS environment variable ”CATALINA HOME”,
use ${ENV[CATALINA HOME]}.

18



2.2.3 Parse Types

Parse types apply only when replacing variables in text files. At places
where it might be necessary to specify a parse type, the documentation will
mention this. Depending on the parse type, IzPack will handle special cases
-such as escaping control characters- correctly. The following parse types are
available:

• plain - use this type for plain text files, where no special substitution
rules apply. All variables will be replaced with their respective values
as is.

• javaprop - use this type if the substitution happens in a Java properties
file. Individual variables might be modified to function properly within
the context of Java property files.

• xml - use this type if the substitution happens in a XML file. Individual
variables might be modified to function properly within the context of
XML files.

• shell - use this type if the substitution happens in a shell script.
Because shell scripts use $variable themselves, an alternative variable
marker is used: %variable or %{variable}.

2.3 The IzPack Elements

When writing your installer XML files, it’s a good idea to have a look at the
IzPack installation DTD.

2.3.1 The Root Element <installation>

The root element of an installation is <installation>. It takes one required
attribute : version. The attribute defines the version of the XML file layout
and is used by the compiler to identify if it is compatible with the XML file.
This should be set to 1.0 for the moment.

2.3.2 The Information Element <info>

This element is used to specify some general information for the installer. It
contains the following elements :

19



• <appname> : the application name

• <appversion> : the application version

• <appsubpath> : the subpath for the default of the installation path.
A variable substitution and a maskable slash-backslash conversion will
be done. If this tag is not defined, the application name will be used
instead.

• <url> : the application official website url

• <authors> : specifies the author(s) of the application. It must contain
at least one <author> element whose attributes are :

– name : the author’s name

– email : the author’s email

• <uninstaller> : specifies whether to create an uninstaller after instal-
lation, it has only the write attribute, with default value yes. If this
tag is not specified, the uninstaller will still be written.

• <javaversion> : specifies the minimum version of Java required to
install your program. Values can be 1.2, 1.2.2, 1.4, etc. The test is a
lexical comparison against the java.version System property on the
install machine.

• <webdir> : Causes a “web installer” to be created, and specifies the
URL packages are retrieved from at install time. The content of the
tag must be a properly formed URL. See section 3.6 for more details.

Here is an example of a typical <info> section :

<info>
<appname>Super extractor</appname>
<appversion>2.1 beta 6</appversion>
<appsubpath>myCompany/SExtractor</appsubpath>
<url>http://www.superextractor.com/</url>
<authors>
<author name="John John Doo" email="jjd@jjd-mail.com"/>
<author name="El Goyo" email="goyoman@mymail.org"/>

</authors>
<javaversion>1.2</javaversion>

</info>

20



2.3.3 The Variables Element <variables>

This element allows you to define variables for the variables substitution
system. Some variables are built-in, such as $INSTALL PATH (which is the
installation path chosen by the user). When you define a set of variables,
you just have to place as many <variable> tags in the file as needed. If you
define a variable named VERSION you need to type $VERSION in the files to
parse. The variable substitutor will then replace it with the correct value.
One <variable> tag take the following attributes :

• name : the variable name

• value : the variable value

Here’s a sample <variables> section :

<variables>
<variable name="app-version" value="1.4"/>
<variable name="released-on" value="08/03/2002"/>

</variables>

2.3.4 The GUI Preferences Element <guiprefs>

This element allows you to set the behavior of your installer GUI. This in-
formation will not have any effect on the command-line installers that will
be available in future versions of IzPack . The arguments to specify are :

• resizable : takes yes or no and indicates whether the window size
can be changed or not.

• width : sets the initial window width

• height : sets the initial window height.

Here’s a sample :

<guiprefs resizable="no" width="800" height="600"/>

Starting from IzPack 3.6, the look and feel can be specified in this section
on a per-OS basis. For instance you can use the native look and feels on
Win32 and OS X but use a third-party one on Unix-like platforms. To do
that, you have to add some children to the guiprefs tag:

21



• laf: the tag that specifies a look and feel. It has a name parameter
that defines the look and feel name.

• Each laf element needs at least one os tag, specified like in the other
parts of the specification that support this tag.

• Like you can add os elements, you can add any number of param ele-
ments to customize a look and feel. A param elements has two attribues:
name and value.

The available look and feels are:

• Kunststoff: kunststoff

• Liquid: liquid

• Metouia: metouia

• JGoodies Looks: looks

If you don’t specify a look and feel for a particular operating system, then
the default native one will be used: Windows on Windows, Aqua on Mac OS
X and Metal on the Unix-like variants.

The Liquid Look and Feel supports the following parameters:

• decorate.frames: yes means that it will render the frames in Liquid
style

• decorate.dialogs: yes means that it will render the dialogs in Liquid
style

The JGoodies Looks look and feel can be specified by using the variant

parameters. The values can be one of:

• extwin: use the Windows Extension look

• plastic: use the basic Plastic look

• plastic3D: use the Plastic 3D look

• plasticXP: use the Plastic XP look (default).

22



Here is a small sample:

<guiprefs height="600" resizable="yes" width="800">

<laf name="metouia">

<os family="unix" />

</laf>

<laf name="looks">

<os family="windows" />

<param name="variant" value="extwin" />

</laf>

</guiprefs>

Starting from IzPack 3.7, some characteristics can be customized with
the <modifier> tag which contains following attributes:

• key: a well defined key of the characteristic which should be changed.

• value the value for the key.

Following key value pairs are defined:

• useButtonIcons: possible are ”yes” or ”no”. Default is ”yes”. If it
is set to ”no”, all buttons which are created via the ButtonFactory
contains no icon also a icon id was submitted. Directly created buttons
are not affected.

• useLabelIcons: possible are ”yes” or ”no”. Default is ”yes”. If it is
set to ”no”, all labels which are created via the LabelFactory contains
no icon also a icon id was submitted. Directly created labels are not
affected.

2.3.5 The Localization Element <locale>

This element is used to specify the language packs (langpacks) that you want
to use for your installer. You must set one <langpack> markup per language.
This markup takes the iso3 parameter which specifies the iso3 language code.

Here’s a sample :

23



<locale>
<langpack iso3="eng"/>
<langpack iso3="fra"/>
<langpack iso3="spa"/>

</locale>

The supported ISO3 codes are :

ISO3 code Language
cat Catalunyan
chn Chinese
cze Czech
dan Danish
deu German
eng English
fin Finnish
fra French
hun Hungarian
ita Italian
jpn Japanese
mys Malaysian
ned Nederlands
nor Norwegian
pol Polnish
por Portuguese (Brazilian)
rom Romanian
rus Russian
scg Serbian
spa Spanish
svk Slovakian
swe Swedish
ukr Ukrainian

2.3.6 The Resources Element <resources>

Several panels, such as the license panel and the shortcut panel, require ad-
ditional data to perform their task. This data is supplied in the form of
resources. This section describes how to specify them. Take a look at each
panel description to see if it might need any resources. Currently, no checks
are made to ensure resources needed by any panel have been included. The
<resources> element is not required, and no <res> elements are required

24



within.

You have to set one <res> markup for each resource. Here are the at-
tributes to specify :

• src : the path to the resource file which can be named freely of course
(for instance my-picture.jpg).

• id : the resource id, depending on the needs of a particular panel

• parse : takes yes or no (default is no) - used to specify whether the
resource must be parsed at the installer compilation time. For in-
stance you could set the application version in a readme file used by
InfoPanel.

• type : specifies the parse type. This makes sense only for a text re-
source - the default is plain, other values are javaprop, xml (Java
properties file and XML files)

• encoding : specifies the resource encoding if the receiver needs to know.
This makes sense only for a text resource.

Here’s a sample :

<resources>
<res id="InfoPanel.info" src="doc/readme.txt" parse="yes"/>
<res id="LicencePanel.licence" src="legal/License.txt"/>

</resources>

2.3.7 The Panels Element <panels>

Here you tell the compiler which panels you want to use. They will appear
in the installer in the order in which they are listed in your XML installation
file. Take a look at the different panels in order to find the ones you need.
The <panel> markup takes a single attribute classname which is the class-
name of the panel.

Here’s a sample :

<panels>
<panel classname="HelloPanel"/>
<panel classname="LicencePanel"/>
<panel classname="TargetPanel"/>
<panel classname="InstallPanel"/>
<panel classname="FinishPanel"/>

</panels>

25



2.3.8 The Packs Element <packs>

This is a crucial section as it is used to specify the files that need to be
installed. The <packs> section consists of several <pack> tags.

The <pack> takes the following attributes :

• name: the pack name

• required: takes yes or no and specifies whether the pack is optional
or not.

• os: optional attribute that lets you make the pack targeted to a specific
operating system, for instance unix, mac and so on.

• preselected: optional attribute that lets you choose whether the pack
is by default selected for installation or not. Possible values are yes

and no. A pack which is not preselected needs to be explicitly selected
by the user during installation to get installed.

• loose: can be used so that the files are not located in the installer Jar.
The possible values are true or false, the default beeing false. The
author of this feature needed to put his application on a CD so that the
users could run it directly from this media. However, he also wanted
to offer them the possibility to install the software localy. Enabling
this feature will make IzPack take the files on disk instead of from the
installer. Please make sure that your relative files paths are correct !

• id: this attribute is used to give a unique id to the pack to be used for
internationalization.

Internationalization of the PacksPanel

In order to provide internationalization for the PacksPanel, so that your users
can be presented with a different name and description for each language
you support, you have to create a file named packsLang.xml xyz where
xyz is the ISO3 code of the language in lowercase. Please be aware that
case is significant. This file has to be inserted in the resources section of
install.xml with the id and src attributes set at the name of the file. The
format of these files is identical with the distribution langpack files located at
$IZPACK HOME/install/langpacks/installer. For the name of the panel
you just use the pack id as the txt id. For the description you use the pack
id suffixed with ’.description’.

The following sections describe the tags available for a <pack> section.

26



<description> - pack description

The contents of the <description> tag describe the pack contents. This
description is displayed if the user highlights the pack during installation.

<depends> - pack dependencies

This can be used to make this pack selectable only to be installed only if
some other is selected to be installed. The pack can depend on more than
one by specifying more than one <depends> elements.
Circular depedencies are not supported and the compiler reports an error if
one occurs.

This tag takes the following attribute:

• packname: The name of the pack that it depends on

<os> - OS restrictions

It is possible to restrict a panel to a certain list of operating systems. This
tag takes the following attributes:

• family: unix, windows or mac

• name: the exact OS name (ie Windows, Linux, ...)

• version: the exact OS version (see the JVM os.version property)

• arch: the machine architecture (see the JVM os.arch property).

<updatecheck>

This feature can update an already installed package, therefore removing
superfluous files after installation. Here’s how this feature author (Tino
Schwarze) described it on the IzPack development mailing-list:

Each pack can now specify an <updatecheck> tag. It supports a
subset of ant fileset syntax, e.g.:

<updatecheck>

<include name="lib/**" />

<exclude name="config/local/** />

</updatecheck>

If the paths are relative, they will be matched relative to $INSTALL PATH.
Update checks are only enabled if at least one <include> is speci-
fied. See com.izforge.izpack.installer.Unpacker for details.

27



<file> - add files or directories

The <file> tag specifies a file (a directory is a file too) to include into the
pack. It takes the following attributes:

• src: the file location (relative path) - if this is a directory its content
will be added recursively

• targetdir: the destination directory, could be something like $INSTALL PATH/subdirX

• os: can optionally specify a target operating system (unix, windows,

mac) - this means that the file will only be installed on its target oper-
ating system

• override: if true then if the file is already installed, it will be overwrit-
ten. Alternative values: asktrue and askfalse – ask the user what to
do and supply default value for non-interactive use. Another possible
values is update. It means that the new file is only installed if it’s
modification time is newer than the modification time of the already
existing file (note that this is not a reliable mechanism for updates -
you cannot detect whether a file was altered after installation this way.)
By default it is set to update.

<additionaldata> This tag can also be specified in order to pass additional
data related to a file tag for customizing.

• <key>: key to identify the data

• <value>: value which can be used by a custom action

<singlefile> - add a single file

Specifies a single file to include. The difference to <file> is that this tag
allows the file to be renamed, therefore it has a target attribute instead of
targetdir.

• src: the file location (relative path)

• target: the destination file name, could be something like $INSTALL PATH/subdirX/fileY

• os: can optionally specify a target operating system (unix, windows,

mac) - this means that the file will only be installed on its target oper-
ating system

• override: see <file> (2.3.8) for description

A <additionaldata> (2.3.8) tag can also be specified for customizing.

28



<fileset>: add a fileset

The <fileset> tag allows files to be specified using the powerful Jakarta
Ant set syntax. It takes the following parameters:

• dir: the base directory for the fileset (relative path)

• targetdir: the destination path, works like for <file>

• casesensitive: optionally lets you specify if the names are case-
sensitive or not - takes yes or no

• defaultexcludes: optionally lets you specify if the default excludes
will be used - takes yes or no.

• os: specifies the operating system, works like for <file>

• override: see <file> for description

• includes: comma- or space-separated list of patterns of files that must
be included; all files are included when omitted. This is an alternative
for multiple include tags.

• excludes: comma- or space-separated list of patterns of files that must
be excluded; no files (except default excludes) are excluded when omit-
ted. This is an alternative for multiple exclude tags.

You specify the files with <include> and <exclude> tags that take the
name parameter to specify the Ant-like pattern :

• ** : means any subdirectory

• * : used as a wildcard.

Here are some examples of Ant patterns :

• <include name="lib"/> : will include lib and the subdirectories of
lib

• <exclude name="**/*.java"/> : will exclude any file in any directory
starting from the base path ending by .java

• <include name="lib/*.jar"/> : will include all the files ending by
.jar in lib

• <exclude name="lib/**/*FOO*"/> : will exclude any file in any sub-
directory starting from lib whose name contains FOO.

29



There area set of definitions that are excluded by default file-sets, just as
in Ant. IzPack defaults to the Ant list of default excludes. There is currently
no equivalent to the ¡defaultexcludes¿ task. Default excludes are:

**/*\~{}
**/\#*\#
**/.\#*
**/%*%
**/.\_*
**/CVS
**/CVS/**
**/.cvsignore
**/SCCS
**/SCCS/**
**/vssver.scc
**/.svn
**/.svn/**
**/.DS\_Store

A <additionaldata> (2.3.8) tag can also be specified for customizing.

<parsable> - parse a file after installation

Files specified by <parsable> are parsed after installation and may have
variables substituted.

• targetfile : the file to parse, could be something like
$INSTALL PATH/bin/launch-script.sh

A slash will be changed to the system dependant path separator (e.g.
to a backslash on Windows) only if no backslash masks the slash.

• type : specifies the type (same as for the resources) - the default is
plain

• encoding : specifies the file encoding

• os: specifies the operating system, works like for <file>

<executable> - mark file executable or execute it

The <executable> tag is a very useful thing if you need to execute something
during the installation process. It can also be used to set the executable flag
on Unix-like systems. Here are the attributes :

30



• targetfile : the file to run, could be something like
$INSTALL PATH/bin/launch-script.sh

Slashes are handled special (see attribute targetfile of tag <parsable>2.3.8).

• class : If the executable is a jar file, this is the class to run for a
JavaTM program

• type : bin or jar (the default is bin)

• stage : specifies when to launch : postinstall is just after the instal-
lation is done and the default value, never will never launch it (useful
to set the +x flag on Unix). uninstall will launch the executable
when the application is uninstalled. The executable is executed before
any files are deleted.

• failure : specifies what to do when an error occurs : abort will abort
the installation process, ask (default) will ask the user what to do and
warn will just tell the user that something is wrong

• os: specifies the operating system, works like for <file>

• keep : specifies whether the file will be kept after execution. The
default is to delete the file after is has been executed. This can be
changed by specifying keep="true".

A <args> tag can also be specified in order to pass arguments to the exe-
cutable:

• <arg>: passes the argument specified in the value attribute. Slashes
are handled special (see attribute targetfile of tag <parsable>2.3.8).

<os> - make a file OS-dependent

The <os> tag can be used inside the <file>, <fileset>, <singlefile>,
<parsable>, <executable> tags to restrict it’s effect to a specific operating
system family, architecture or version:

• family: unix, windows, mac to specify the operating system family

• name: the operating system name

• version: the operating system version

• arch: the operating system architecture (for instance the Linux kernel
can run on i386, sparc, and so on)

31



Here’s an example installation file :

<packs>
<!-- The core files -->
<pack name="Core" required="yes">

<description>The IzPack core files.</description>
<file targetdir="$INSTALL_PATH" src="bin"/>
<file targetdir="$INSTALL_PATH" src="lib"/>
<file targetdir="$INSTALL_PATH" src="legal"/>
<file targetdir="$INSTALL_PATH" src="Readme.txt"/>
<file targetdir="$INSTALL_PATH" src="Versions.txt"/>
<file targetdir="$INSTALL_PATH" src="Thanks.txt"/>
<parsable targetfile="$INSTALL_PATH/bin/izpack-fe"/>
<parsable targetfile="$INSTALL_PATH/bin/izpack-fe.bat"/>
<parsable targetfile="$INSTALL_PATH/bin/compile"/>
<parsable targetfile="$INSTALL_PATH/bin/compile.bat"/>
<executable targetfile="$INSTALL_PATH/bin/compile" stage="never"/>
<executable targetfile="$INSTALL_PATH/bin/izpack-fe" stage="never"/>

</pack>

<!-- The documentation (1 directory) -->
<pack name="Documentation" required="no">

<description>The IzPack documentation (HTML and PDF).</description>
<file targetdir="$INSTALL_PATH" src="doc"/>

</pack>
</packs>

2.3.9 The Native Element <native>

Use this if you want to use a feature that requires a native library. The
native libraries are placed under bin/native/... There are 2 kinds of na-
tive libraries : the IzPack libraries and the third-party ones. The IzPack
libraries are located at bin/native/izpack, you can place your own libraries
at bin/native/3rdparty. It is possible to place a native library also into
the uninstaller. It is useable from CustomActions (7). If one or more are
referenced for it, the needed support classes are automatically placed into
the uninstaller. To place it only on operating systems for which they are
build, it is possible to define an OS restriction. This restriction will only be
performed for the uninstaller. The markup takes the following attributes :

• type : izpack or 3rdparty

• name : the library filename

• stage: stage where to use the library (install—uninstall—both)

32



<os> - make a library OS-dependent

The <os> tag can be used to restrict the inclusion into the uninstaller to a
specific operating system family, architecture or version. The inclusion into
the installer will be always done. For more information see 2.3.8.

Here’s a sample :

<native type="izpack" name="ShellLink.dll"/>

2.3.10 The Jar Merging Element <jar>

If you adapt IzPack for your own needs, you might need to merge the content
of another jar file into the jar installer. For instance, this could be a library
that you need to merge. The <jar> markup allows you to merge the raw
content of another jar file into the installer and the uninstaller. It is necessary
that the paths in the jars are unique because only the contained files of the
jar are added to the installer jar, not the jar file self. The attributes are:

• src : the path at compile time

• stage: stage where to use the contents of the additional jar file (in-
stall—uninstall—both)

A sample :

<jar src="../nicelibrary.jar"/>

2.4 The Available Panels

In this section I will introduce the various panels available in IzPack. The
usage for most is pretty simple and described right here. The more elaborate
ones are explained in more detail in the Advanced Features chapter or in their
own chapter. The panels are listed by their class name. This is the name
that must be used with the classname attribute (case-sensitive).

2.4.1 HelloPanel

This panel welcomes the user by displaying the project name, the version,
the URL as well as the authors.

33



2.4.2 InfoPanel and HTMLInfoPanel

This is a kind of ’README’ panel. It presents text of any length. The text
is specified by the (HTML)InfoPanel.info resource. Starting from IzPack
3.7.0, variables substitution is allowed.

2.4.3 LicencePanel and HTMLLicencePanel

Note : there is a mistake in the name - it should be LicensePanel. In France
the word is Licence ... and one of my diploma is a ’Licence’ so ... :-)

These panels can prompt the user to acknowledge a license agreement.
They block unless the user selects the ’agree’ option. To specify the license
agreement text you have to use the (HTML)LicencePanel.licence resource.

2.4.4 PacksPanel

Allows the user to select the packs he wants to install.

2.4.5 ImgPacksPanel

This is the same as above, but for each panel a different picture is shown to
the user. The pictures are specified with the resources ImgPacksPanel.img.x
where x stands for the pack number, the numbers start from 0. Of course it’s
up to you to specify as many images as needed and with correct numbers.
For instance if you have 2 packs core and documentation (in this order),
then the resource for core will be ImgPacksPanel.img.0 and the resource
for doc will be ImgPacksPanel.img.1. The supported image formats de-
pend on what you JVM supports, but starting from J2SE 1.3, GIF, JPEG
and PNG are supported.

2.4.6 TargetPanel

This panel allows the user to select the installation path. It can be customized
with the following resources (they are text files containing the path) :

• TargetPanel.dir.f where f stands for the family (mac, macosx, windows,

unix)

34



• TargetPanel.dir : the directory name, instead of the software to in-
stall name

• TargetPanel.dir.d where d is a ”dynamic” name, as returned by
the JavaTM virtual machine. You should write the name in lower-
case and replace the spaces with underscores. For instance, you might
want a different setting for Solaris and GNU/Linux which are both
Unix-like systems. The resources would be TargetPanel.dir.sunos,

TargetPanel.dir.linux. You should have a Unix-resource in case it
wouldn’t work though.

2.4.7 InstallPanel

You should always have this one as it launches the installation process !

2.4.8 XInfoPanel

A panel showing text parsed by the variable substitutor. The text can be
specified through the XInfoPanel.info resource. This panel can be useful
when you have to show information after the installation process is completed
(for instance if the text contains the target path).

2.4.9 FinishPanel

A ending panel, able to write automated installer information. For details
see the chapter on ’Advanced Features’.

2.4.10 SimpleFinishPanel

Same as FinishPanel, but without the automated installer features. It is
aimed at making the life easier for end-users who will never encounter the
automated installer extra feature.

35



2.4.11 ShortcutPanel

This panel is used to create desktop shortcuts. For details on using the
ShortcutPanel see the chapter ’Desktop Shortcuts’.

2.4.12 UserInputPanel

This panel allows you to prompt the user for data. What the user is prompted
for is specified using an XML file which is included as a resource to the
installer. See chapter 6 on page 71 for a detailed explanation.

2.4.13 CompilePanel

This panel allows you to compile just installed Java sourcecode. The details
for the compilation are specified using the resource CompilePanel.Spec.xml.
The XML file has the following format:

<compilation>

<global>

<compiler>

<choice value="$JAVA_HOME/bin/javac" />

<choice value="jikes" />

</compiler>

<arguments>

<choice value="-O -g:none" />

<choice value="-O" />

<choice value="-g" />

<choice value="" />

</arguments>

</global>

<jobs>

<classpath add="$INSTALL_PATH/src/classes/" />

<job name="optional name">

<directory name="$INSTALL_PATH/src/classes/xyz" />

</job>

<job name="another job">

<packdepency name="some package name" />

<classpath sub="$INSTALL_PATH/" />

<directory name="$INSTALL_PATH/src/classes/abc" />

<file name="$INSTALL_PATH/some/file.java" />

</job>

</jobs>

36



</compilation>

In theory, jobs can be nested but this has not been tested at all. A
change to the classpath within a job only affects this job and nested jobs.
The classpath should be specified before any files or directories.

The user can change the compiler to use and choose from some default
compilation options before compilation is started.

2.4.14 ProcessPanel

This panel allows you to execute arbitrary files after installation. The details
for the compilation are specified using the resource ProcessPanel.Spec.xml.

The XML file has the following format:

<processing>

<job name="do xyz">

<os family="windows" />

<executefile name="$INSTALL_PATH/scripts/xyz.bat">

<arg>doit</arg><arg>$variable</arg>

</executefile>

</job>

37



<job name="do xyz">

<os family="unix" />

<executefile name="$INSTALL_PATH/scripts/xyz.sh">

<arg>doit</arg><arg>$variable</arg>

</executefile>

</job>

</processing>

Each job may have an <os> attribute – see 2.3.8 for details.

It is also possible to execute Java classes from this panel. Here’s what
this feature author (Alex Bradley) says:

I’ve been able to work around my requirements by extend-
ing the ProcessPanelWorker functionality to run user-specified
classes. I’ve extended the DTD of the ProcessPanel.Spec.xml

to include a new element:

<executeclass name="classname">

<args..../>

</executeclass>

I’ve also added a new sub-class of Processable called executeclass.
This will run a user-specified class in the context of the installer
JVM with a single method :

run( AbstractUIProcessHandler handler, String[] args]);

It can do everything I need and more. In particular, it al-
lows me to write a process extension and still be able to provide
feedback to the user through the feedback panel, and to add new
functionality to the installer, after its been built.

New with version 3.7 is the possibility to tee output that is written to the
ProcessPanel’s textarea into an optional logfile. Using this feature is pretty
much straightforward, you only have to add a line in ProcessPanel.Spec.xml

that will tell IzPack the location, where the logfile should be stored.
Variable substitution is performed, so you can use $INSTALL PATH as

example.
The name of the logfile is not (yet) configurable but should fit in most

cases. It will be named

Install_V<$APP_VER>_<YYYY>-<MM>-<DD>_<hh>-<mm>-<ss>_<RandomId>.log

38



Here’s an example:

<processing>

<logfiledir>$INSTALL_PATH</logfiledir>

<job name="do xyz">

<os family="windows" />

<executefile name="$INSTALL_PATH/scripts/xyz.bat">

<arg>doit</arg><arg>$variable</arg>

</executefile>

</processing>

This will generate a logfile named e.g. Install V1.3 2004-11-08 19-22-20 43423.log

located in $INSTALL PATH.
ProcessPanelWorker will write all output that is directed to stdout

and stderr to this file if ProcessPanel.Spec.xml contains the logfiledir

entry.
Please note that this one file is used for storing the complete output of

all jobs and not a file for each job that is run.

2.4.15 JDKPathPanel

This panel allows the user to select a JDK path. The variable JAVA HOME
does not point to a JDK, else to a JRE also the environment variable points
to a JDK. This is not a bug, this is the behavior of the VM. But some
products needs a JDK, for that this panel can be used. There is not only
a selection of the path else a validation. The validation will be done with
the file JDKPath/lib/tools.jar. If JAVA HOME points to the VM which is
placed in the JDK, the directory will be used as default (JAVA HOME/..).
If there is the variable

JDKPathPanel.skipIfValid

defined with the value ”yes”, the panel will be skiped if the path is valid.
Additional it is possible to make a version control. If one or both variables

JDKPathPanel.minVersion

JDKPathPanel.maxVersion

are defined, only a JDK will be accepted which has a version in the range of
it. The detection is a little bit pragmatically, therefor it is possible, that the
detection can fail at some VMs. The values in the install.xml should be like

39



<variables>

<variable name="JDKPathPanel.minVersion" value="1.4.1" />

<variable name="JDKPathPanel.maxVersion" value="1.4.99" />

<variable name="JDKPathPanel.skipIfValid" value="yes" />

</variables>

If all is valid, the panels isValidated method sets the variable

JDKPath

to the chosen path. Be aware, this variable exist not until the JDKPanel was
quitted once. At a secound activation, the default will be the last selection.

40



Chapter 3

Advanced Features

3.1 Ant Integration

IzPack can be easily integrated inside an Ant build process. To do so you
first need to tell Ant that you would like to use IzPack :

<!-- Allows us to use the IzPack Ant task -->
<taskdef name="izpack" classpath="${basedir}/lib/compiler.jar"

classname="com.izforge.izpack.ant.IzPackTask"/>

If you want to use the standalone compiler (and therefore don’t need an
IzPack installation for building), the task needs to be defined as follows:

<!-- Allows us to use the IzPack Ant task -->
<taskdef name="izpack" classpath="${basedir}/lib/standalone-compiler.jar"

classname="com.izforge.izpack.ant.IzPackTask"/>

Don’t forget to add compiler.jar or standalone-compiler.jar to the
classpath of the Ant process.

Then you can invoke IzPack with the izpack task which takes the fol-
lowing parameters:

• input : the XML installation file

• output : the output jar installer file

• installerType : optional. standard or web. If web, the <webdir>

attribute must be specified in the input file (see section 3.6). Used to
force creation of a standard installer when the <webdir> attribute has
been used.

• baseDir : the base directory to resolve the relative paths

41



• izPackDir: the IzPack home directory. Only neccessary if you do not
use the standalone compiler.

Here is a sample of the task invocation:

<!-- We call IzPack -->
<echo message="Makes the installer using IzPack"/>
<izpack input="${dist.dir}/IzPack-install.xml"

output="${dist.dir}/IzPack-install.jar"
installerType="standard"
basedir="${dist.dir}"
izPackDir="${dist.dir}/"/>

3.2 System properties as variable

All system properties are available as $SYSTEM ¡variable¿ where ¡variable¿
is the actual name BUT with all separators replaced by ’ ’. Properties with
null values are never stored.

Examples:

$SYSTEM_java_version or $SYSTEM_os_name

3.3 Automated Installers

When you conclude your installation with a FinishPanel, the user can save
the data for an automatic installation. With this data, he will be able to run
the same installation on another similar machine. In an environment where
many computers need to be supported this can save a lot of time.

So run once the installation on a machine and save your automatic in-
stallation data in auto-install.xml (that’s just a sample). Then put this
file in the same directory as the installer on another machine. Run it with:
java -jar installer.jar auto-install.xml

It has reproduced the same installation :-)

42



3.4 Picture on the Language Selection Dialog

You can add a picture on the language selection dialog by adding the follow-
ing resource : installer.langsel.img. GIF, JPEG and PNG pictures are
supported starting from J2SE 1.3.

3.5 Picture in the installer

It is possible to specify an optional picture to display on the left side of
the installer. To do this, you just have to define a resource whose id is
Installer.image. For instance,

<res id="Installer.image" src="nice-image.png" />

will do that. If the resource isn’t specified, no picture will be displayed at
all. GIF, JPEG and PNG pictures are supported starting from J2SE 1.3.

You can also give a specific picture for a specific panel by using the
Installer.image.n resource names where n is the panel index. For instance
if you want a specific picture for the third panel, use Installer.image.2

since the indexes start from 0.

3.6 Web Installers

The web installers allow your users to download a small installer that does
not contain the files to install. These files will be downloaded from an HTTP
server such as Apache HTTPD. If you have many optional packs, this can
save people’s resources. Its very easy: people download a small Jar file con-
taining the installer, they launch it and choose their packages. Then the
installer will get the required packages from individual Jar files located on a
server, only downloading those required. It’s that simple.

To create a web installer, add the <webdir> element to the <info> ele-
ment (see section 2.3.2). The text must be a valid, fully qualified URL for a
direcory on the web server.

<info>
<appname>Super extractor</appname>

43



<appversion>2.1 beta 6</appversion>
<url>http://www.superextractor.com/</url>
<webdir>http://www.superextractor.com/download</url>

</info>

You can force creation of a standard installer even if webdir is speci-
fied, by specifically creating a standard installer from the command line
invocation or ant task (see ).

When installing, if the user is behind a firewall, attempting download the
jar files may fail. If this happens, the user will be prompted to enter the
name hostname and port of their firewall.

You may password protect the files using mechanisms provided by your
web server, IzPack will prompt for a password at install time, when required.

3.7 More Internationalization

3.7.1 Special resources

IzPack is available in several languages. However you might want to inter-
nationalize some additional parts of your installer. In particular you might
want this for the *InfoPanel and *LicencePanel. This is actually pretty easy
to do. You just have to add one resource per localization, suffixed with the
ISO3 language code. At runtime these panels will try to load a localized
version.

For instance let’s suppose that we use a HTMLInfoPanel. Suppose that
we have it in English, French and German. We want to have a French text
for french users. Here we add a resource pointing to the French text whose
name is HTMLInfoPanel.info fra. And that’s it ! English and German
users (or anywhere other than in France) will get the default text (denoted
by HTMLInfoPanel.info) and the French users will get the French version.
Same thing for the other Licence and Info panels.

To sum up : add <iso3 code> to the resource name for InfoPanel, HTMLInfoPanel,
LicencePanel and HTMLLicencePanel.

3.7.2 Packs

Thanks to Thorsten Kamann, it is possible to translate the packs names and
descriptions. To do that, you have to define a special identifier in the ele-

44



ments of the XML installation file and add the related entries in the suitable
langpacks. For instance if you have the following XML snippet:

<pack name="core" id="core.package" ...>

<description/>

</pack>

then the related entries of the langpacks will look like this:

<str id="core.package" txt="Core Package"/>

<str id="core.package.description" txt="The core package provides

45



Chapter 4

Desktop Shortcuts

(by Elmar Grom and Marc Eppelmann)

4.1 Defining Shortcuts

4.1.1 Introduction

On todays GUI oriented operating systems, users are used to launching ap-
plications, view web sites, look at documentation and perform a variety of
other tasks, by simply clicking on an icon on the desktop or in a menu system
located on the desktop. Depending on the operating system these icons have
different names. In this context we will refer to them collectively as shortcuts.

Apart from actually placing an application on the target system, users
routinely expect an installer to create the necessary shortcuts for the ap-
plication as well. For you as application developer, this means that for a
professional appearance of your product you should also consider creating
shortcuts.

In contrast to the general specification of an IzPack installer, the specifi-
cation of shortcuts in IzPack requires a little more effort. In addition, some
of the concepts are a bit more complex and there are some operating sys-
tem specific issues to observe. Fortunately, you only need to worry about
operating system specifics if you want to deploy your application to multiple
different operating systems. In any case, it will pay off to spend some time
to study this documentation and the example spec files before you start to
implement your own shortcuts.

46



At the time of writing this Chapter the current IzPack Version 3.7.0-M3
is only capable to creating shortcuts on

1. Microsoft Windows
and

2. Unix and Unix-based operating systems (like Linux), which use the
X11 GUI-System and FreeDesktop.org based shortcut handling (such
as KDE and Gnome).

Other operating or GUI systems, such as MacOS < MacOS-X are not
supported. However, there is a special UI-variant that automatically pops
up on unsupported systems. It informs the user about the intended targets
of your shortcuts and allows the user to save this information to a text file.
While this is not an elegant solution, at least it aids the user in the manual
creation of the shortcuts.

If you would like to review what an end user would see if the target op-
erating system is not supported, you can do the following. Simply place the
tag <notSupported/> in the spec file. This tag requires no attributes or
other data. It must be placed under <shortcuts>, just like the individual
shortcut specifications. Be sure to remove this tag before getting your appli-
cation ready for shipment.

We expect other operating systems to be supported in the near future and
as always, contributions are very welcome. At present someone is actively
working on Mac support.

4.1.2 What to Add to the Installer

There are some things that you have to add to your installer to enable short-
cut creation. Obviously you need to add the panel responsible for creating
shortcuts. This panel is aptly enough called ShortcutPanel. However, in
order for the ShortcutPanel to work properly a number of additional items
are required. These must be added manually to the installer, as all other re-
sourcs, since the front-end will be rewritten. In this chapter we will explain
which of these items are required and for what reason.

First, we would like to discuss items that are supplied with IzPack and
only need to be added to the installer. After that, we move on to the things
you have to prepare yourself before you can add them. The way in which

47

http://www.x11.org/
http://www.freedesktop.org/
http://www.kde.org/
http://www.gnome.org/


shortcuts are created varies widely among operating systems. In some cases
it is possible to do this with pure Java code, while other systems -such as
MS-Windows- require native code to accomplish this task. On the other side,
the current implementation, which creates shortcuts on Unix based systems
needs no native library at all, since it works with ’these’ pure Java code.
The native library required for the Windows operating systems are supplied
with IzPack is called ShellLink.dll. Note: They will not be automatically
added to your installer file. You need to list them yourself in the XML file
for the installer. A describtion how to do this follows in the next section.

Native libraries can be added to the installer by using the <native> tag.
To add the ShellLink.dll, you just have to add the following line to the
installer XML file:
<native type="izpack" name="ShellLink.dll"/>

For more details about the use of the <native> tag see the chapter about
the format of the XML file.

You have also to add an extra specification file for each platform family
to enable shortcut creation on these platforms. At least one (the default file)
is required by the shortcut panel. The format of all spec files is XML and
they must be added to the installer as a resource. The source name of this
specification does not matter, however its resource name (also called id or
alias) when added to the installer must be (prefix)+shortcutSpec.xml.
At this release, there are only two prefixes supported: ”Win ” for the Win-
dows family and ”Unix ” for all Unixes. If the prefix is ommited the shortcut
panel searches for a named resource: shortcutSpec.xml. This is the default
resource name. As the default resource name will be used on Windows plat-
forms, the "Win shortcutSpec.xml" can be ommited.
Hint: If the shortcut panel does not find one of these named resources, it
will never appears. So, do not use different resource names and do not add
a path to these.

Example

<res src="C:\MyDocuments\Installer\default_shortcut_specification.xml"
id="shortcutSpec.xml"/>

<res src="C:\MyDocuments\Installer\unix_shortcut_specification.xml"
id="Unix_shortcutSpec.xml"/>

Why use different shortcut spec files?

48



1. The Target filenames are most different.(batch files on Windows vs.
shell scripts on Unix.)

2. The Icon file formats are different. ICOs on Windows-, PNGs on Unix-
platforms.

3. The Target locations can be different.

This is the simple reason.

4.1.3 Why Native Code to do the Job on Windows?

by Elmar

This little chapter is not strictly part of the documentation but I have
been asked this question sufficiently often that I think it’s worth explaining
right here. It is certainly a natural question to ask. After all IzPack is an
application completely written in Java and primarily targeted for the instal-
lation of Java based programs. So why wouldn’t we try to keep everything
pure Java and avoid the use of native code altogether? There must be some
personal preference of the developer hidden behind this approach you might
think. Well, not really, but I admit at first it seems quite feasible to write
it all in Java. On virtually any operating system or GUI surface around,
Shortcuts are simply files on the local file system. Files can be created and
accessed directly from within Java, so why should there be a need for using
native code?

Well, it turns out that just creating a file is not good enough, it also needs
to have the right content. Shell Links as they are called in Windows land are
binary files. I actually managed to find documentation on the format. Nat-
urally this was hacker data, you won’t get this sort of thing from Microsoft
(by the way: thanks a lot to Jesse Hager for a smash job!). Armed with this
information I tried to create these files myself in Java. The problem was that
the documentation was not entirely accurate and had some gaps as well. I
tried for over a month to get this to work but finally I had to give up. Even if
I would have succeeded, it would have been a hack, since a shell link requires
some information that is impossible to obtain from within Java. Usually you
can successfully create a shell link by only filling in the bare minimum infor-
mation and then ask Windows to resolve the link. Windows then repairs the
shell link. Unfortunately this was only the beginning, soon I encountered a
host of other problems. For one thing, the installer needs to know the correct

49



directories for placing the links and it turns out they are named differently in
different countries. In addition, there are ways of manually modifying them,
which some people might actually have done. The only way to place the
shortcut files reliably is through accessing the Windows Registry. Naturally,
this operation also required native code. Same thing with asking Windows
to resolve the link... On the bottom line, at every step and turn you run into
an issue where you just need to use native code to do the trick. So I decided
that I would do it the proper way all the way through. That is in a nutshell
the reason why I used native code to create shortcuts on MS-Windows.

As I am writing this I am at work with a friend to replicate this work
for the Mac and it looks very much like we need to take the same approach
there as well. On the various Unix GUIs on the other hand, we are lucky
that we can do the job without native libraries.

4.1.4 The Shortcut Specification

As we say above, the specification for shortcuts is provided to the Shortcut-
Panel in the XML fileformat. At the time of this writing (for IzPack version
3.7.0-M3) the front-end will be rewritten. Until these work is in progress you
have to write the specification files manually. For your convenience, there are
two annotated sample specification files in the sample subdirectory of your
IzPack installation. At the beginning you might want to experiment with
these files.

Both specification files have one root element called <shortcuts>. This
root elements recognizes 3 different child elements:
<programGroup>, <skipIfNotSupported/> and <shortcut>.

<skipIfNotSupported/> can be used to avoid the panel to show the al-
ternative UI which shows the shortcut information that would have been
created on a system that supports it. In other words, using this tag will
make the panel be silent on non-supported systems. The default is to show
the alternative UI.

The <programGroup> tag allows you to specify the name of the menu,
or more precise, the folder in which the shortcuts will be grouped. The ex-
act location and appearance of the program group depends on the specific
target system on which the application will be installed, however you can
partially control it. Please note that <programGroup> may only appear once

50



in the specification. If more than one instance occurs, only the first one
will be used. This tag requires two attributes: defaultName and location.
defaultName specifies the name that the group menu should have on the
target system. You should be aware that the ShortcutPanel will present this
name to the user as a choice. The user can then edit this name or select a
group that already exists. As a result, there is no guarantee that the actual
name of the program group on the target system is identical with your spec-
ification. location specifies where the group menu should show up. There
are two choices: applications and startMenu. If you use applications,
then the menu will be placed in the menu that is ordinarily used for appli-
cation shortcuts. applications is recommended for Unix shortcuts. If you
use startMenu, the group menu will be placed at the top most menu level
available on the target system. Depending on the target system, it might not
be possible to honor this specification exactly. In such cases, the Shortcut-
Panel will map the choice to the location that most closely resembles your
choice. Unix shortcuts do not need to support the startMenu, because the
applications menu is already on the highest level. This means this has no
affect on thess platform.

For each shortcut you want to create, you have to add one <shortcut>

tag. Most details about the shortcut are listed as attributes with this tag.
The following sections describe what each attribute does, which attributes
are optional and which ones are required and what the values are that are ac-
cepted for each of the attributes. Note that all attributes that have a yes/no
choice can also be omitted. Doing so has the same effect as using a value of
no. The shortcut attributes can be divided into two groups

• attributes that describe properties of the shortcut

• attributes that define the location(s) at which a copy of the shortcut
should be placed.

The following attributes are used to define location:

• programGroup

• desktop

• applications

• startMenu

51



• startup

4.1.5 Shortcut Attributes

There are three classes of attributes. Some are required, most are completely
optional and some are semi-optional. The set of semi-optional attributes are
all the attributes used to define the location of a shortcut. These are semi-
optional because for any individual one it is your choice if you want to include
it or not. However they are not completely optional. You must specify at
least one location. If all were omitted, the instruction would essentially tell
the panel that a copy of this shortcut is to be placed at no location. In other
words no copy is to be placed anywhere.

name - required

The value of this attribute defines the name that the shortcut will have.
This is the text that makes up the menu name if the shortcut is placed in a
menu or the caption that is displayed with the shortcut if it is placed on the
desktop.

target - required

The value of this attribute points to the application that should be
launched when the shortcut is clicked. The value is translated through the
variable substitutor. Therefore variables such as $INSTALL PATH can be used
to describe the location. You should be aware that the use of this tag
is likely to change once other operating systems are supported.

commandLine - optional

The value of this attribute will be passed to the application as command
line. I recommend to work without command line arguments, since these
are not supported by all operating systems. As a result, your applications
will not be portable if they depend on command line arguments. Instead,
consider using system properties or configuration files.

workingDirectory - optional

This attribute defines the working directory for the application at the
time it is launched. I would recommend some caution in relying on this

52



too heavily if your application should be portable, since this might not be
supported by all operating systems. At this time I don’t have enough in-
formation to make a definite statement one way or the other. The value
is translated through the variable substitutor. Therefore variables such as
$INSTALL PATH can be used to describe the directory.

description - optional

The value of this attribute will be visible to the user when a brief de-
scription about associated application is requested. The form of the request
and the way in which this description is displayed varies between operating
systems. On MS-Windows the description is shown as a tool tip when the
mouse cursor hovers over the icon for a few seconds. On some operating
systems this feature might not be supported but I think it is always a good
idea to include a brief description.

iconFile - optional

The value of this attribute points to the file that holds the icon that
should be displayed as a symbol for this shortcut. This value is also trans-
lated through the variable substitutor and consequently can contain variables
such as $INSTALL PATH. If this attribute is omitted, no icon will be speci-
fied for the shortcut. Usually this causes the OS to display an OS supplied
default icon. The use of this attribute is also likely to change once
other operating systems are supported. Read the Section about
Icons below, for more information.

iconIndex - optional

If the file type for the icon supports multiple icons in one file, then this
attribute may be used to specify the correct index for the icon. I would also
advise against using this feature, because of operating system incompatibil-
ities in this area. In file formats that do not support multiple icons, this
values is ignored.

initialState - optional

There are four values accepted for this attribute: noShow, normal, maximized
and minimized. If the target operating system supports this feature, then
this value will have the appropriate influence on the initial window state of
the application. noShow is particularly useful when launch scripts are used

53



that cause a command window to open, because the command window will
not be visible with this option. For instance on MS-Windows starting a
batch file that launches a Java application has the less than pretty side effect
that two windows show: the DOS command prompt and the Java applica-
tion window. Even if the shortcut is configured to show minimized, there
are buttons for both windows in the task bar. Using noShow will completely
eliminate this effect, only the Java application window will be visible. On
Unix use normal , because this is not supported.

programGroup - semi-optional

The value for this attribute can be either yes or no. Any other value will
be interpreted as no. If the value is yes, then a copy of this shortcut will be
placed in the group menu. On Unix (KDE) this will always be placed on the
top level.

desktop - semi-optional

For this attribute the value should also be yes or no. If the value is yes,
then a copy of the shortcut is placed on the desktop. On Unix the shortcuts
will only be placed on the (KDE-) desktop of the user, who currently runs
the installer. For Gnome the user can simply copy the *.desktop files from
~/Desktop to ~/gnome-desktop. (This is already a TODO for the Unix-
shortcut implementation.)

applications - semi-optional

This is also a yes/no attribute. If the value is yes, then a copy of the
shortcut is placed in the applications menu (if the target operating system
supports this). This is the same location as the applications choice for the
program group. This makes no sense on Unix.

startMenu - semi-optional

This is a yes/no attribute as well. If the value is yes, then a copy of the
shortcut is placed directly in the top most menu that is available for placing
application shortcuts. This is not supported on Unix. see above.

startup - semi-optional

This is also a yes/no attribute. If the value is yes, then a copy of the short-

54



cut is placed in a location where all applications get automatically started
at OS launch time, if this is available on the target OS. This is also not
supported on Unix.

Unix specific shortcut attributes

This extension was programmed by Marc Eppelmann. This is still in de-
velopment and may be changed in one of the next releases of IzPack.

type - required

This must be one of Application or Link

• Application: To start any application, native, Java or shell-script based,
the type has to be Application. The GUI-System will launch this
Application, so as is, thru their native shell or application launcher. In
this case, note that the right workingDirectory is always important
on Unix platforms. If the users PATH environment variable does not
contain the path, where the application is located, this can never be
run, until the workingDirectory does not contain these path. The
needed current path: ”.”, this is the case on most systems, should be
in the users PATH environment variable. Consult the Unix manuals
for more details.

• Link: If you want to open a URL in the users default Webbrowser, you
have to set the type to Link. Note: The url attribute must be set to
work properly.

• Other: There are more supported types on KDE, like FSDevice, but
these types makes no sense for IzPack, in my opinion.

Without the type the Unix shortcut does not work.

url - semi-optional

If you want to create a shortcut as type Link, then you have to set
the url attribute. The value can be a locally installed html or another
document, with a known MIME type, like plain text, or a WWW Url i.e.
’http://www.izforge.com/izpack’.

55



A local document can be referenced by i.e. ”$INSTALL PATH/doc/index.html”.

The IzPack variable substitution system is supported by the url.

encoding - required

This should always set to UTF-8.

terminal - optional

If you want, the user can see the console output of a program (in Java
applications ”System.outs”), set the terminal attribute to true.

KdeSubstUID - unused

This is not fully implemented by IzPack. I the future this is the sudo
option for a shortcut.

4.1.6 Selective Creation of Shortcuts

Usually all shortcuts that are listed will be created when the user clicks the
’Next’ button. However it is possible to control to some degree if specific
shortcuts should be created or not. This is based on install conditions. By
including one or more <createForPack name=’’a pack name’’ /> tags in
the specification for a shortcut, you can direct the ShortcutPanel to create
the shortcut only if any of the listed packs are actually installed. The ’name’
attribute is used to define the name of one of the packs for which the short-
cut should be created. You do not need to list all packs if a shortcut should
always be created. In this case simply omit this tag altogether.

A word of caution

For any shortcut that is always created, I would recommend to omit this
tag, since I have seen a number of problems related to changing pack names.
You can save yourself some troubleshooting and some Aspirin by not using
this feature if it’s not required. On the other hand if you need it I would
advise to be very careful about changing pack names.

56



4.1.7 Summary

Native Libraries

• ShellLink.dll - required by Microsoft Windows

• ’Nothing’ - for KDE/Gnome shortcuts

Names of the Specification Files
shortcutSpec.xml for Windows and as default.
Unix shortcutSpec.xml for Unix.

Specification File Layout - Windows

<shortcuts>
<skipIfNotSupported/>
<programGroup defaultName="MyOrganization\MyApplication"

location="applications||startMenu"/>
<shortcut
name="Start MyApplication"
target="$INSTALL_PATH\Path\to\MyApplication\launcher.bat"
commandLine=""
workingDirectory="$INSTALL_PATH\Path\to\MyApplication"
description="This starts MyApplication"
iconFile="$INSTALL_PATH\Path\to\MyApplication\Icons\start.ico"
iconIndex="0"
initialState="noShow||normal||maximized||minimized"
programGroup="yes||no"
desktop="yes||no"
applications="yes||no"
startMenu="yes||no"
startup="yes||no">

<createForPack name="MyApplication Binaries"/>
<createForPack name="MyApplication Batchfiles"/>

</shortcut>
</shortcuts>

A sample Specification File for Unix is at the end of this chapter

4.2 Shortcut Tips

I wrote this section to provide additional information about issues surround-
ing the creation of shortcuts. Reading this section is not necessary to suc-
cessfully create shortcuts, but it might help you creating an installation that

57



works more smoothly. In addition, it might give you some knowledge about
operating systems that you don’t know so well. In fact most of the issues de-
scribed in this section are focused on differences in operating system specifics.

4.2.1 The Desktop

You should recognize that the desktop is precious real estate for many people.
They like to keep it uncluttered and keep only the things there that they use
on a regular basis. This is not true for everybody and you might personally
think different about this. Still, the fact remains that a lot of people might
have different feelings about it, so you should not automatically assume that
it is ok to place all of your shortcuts on the desktop proper. While your
application is certainly one of the most important things for you, for your
customers it is probably one of many applications they use and maybe not
even the most important one. Accordingly, placing more shortcut icons there
than they feel they will use on a regular basis and especially doing this with-
out asking for permission might trigger some bad temper.

Annotation: But even the experienced user should be able to organize
their Desktop. On Linux the users desktop is the only place, which supports
any kind of shortcuts.

It is common practice to create a program group in the application menu
system of the OS and place all shortcuts that go with an application in that
program group. In addition, only one shortcut to the key access point of the
application is placed directly on the desktop. Many installers first ask for
permission to do so, as does the ShortcutPanel in IzPack.

I would like to recommend that you always create a shortcut in the menu
system, even if your application has only one access point and you are placing
this on the desktop. Note that shortcuts can also be placed directly in the
menu, they don’t need to be in a program group. There are two reasons for
doing so.

• If the user elects not to create shortcuts on the desktop, they will end
up with no access point to your application

• Even if this works fine, occasionally people ’clean up’ their desktop.
They might later find that they accidentally deleted the only access

58



point to your application. For the less technology savvy users, recreat-
ing the shortcut might be a rough experience.

4.2.2 Icons

Icons are supplied in image files, usually in some kind of bitmap format.
Unfortunately there is no format that is universally recognized by all oper-
ating systems. If you would like to create shortcuts on a variety of operating
systems that use your own icons, you must supply each icon in a number of
different formats. This chapter discusses icon file formats used on various
operating systems. Fortunately there are good programs available that allow
you to convert between these formats, so that creating the different files is
not much of a problem once the icons themselves are created.

Microsoft Windows

Windows prefers to use its native icon file format. Files of this type
usually use the extension *.ico. These so called ICO files can hold multiple
icons in one file, which can be useful if the same icon is to be provided in a
number of sizes and color-depths.

Windows itself selects the icon with the most matching dimensions and
displays it. While the Start menu displays the icon with 16x16 pixel if avail-
able, the desktop displays the 32x32 pixel resolution of the same ICO if this
is in.

In other words, a ICO file has embedded one or more dimensions of the
same Icon. We recommend to play with microangelo.

Dlls and Exe files on the other side, can store, amongst other things, a
collection of different Icons. You can select your desired Icon by its index.
The lowest index is 0. Use the iconIndex attribute in the spec file to specify
this index.

As a sample look into

%SystemRoot%\system32\shell32.dll

These contains a lot of Windows own icons. You can use the PE Explorer or
another Resource Editor to extract or modify Icons in dlls or exe files. But
be warned. You can also destroy a working application with these kind of
tools.

At least Windows also supports the use of bitmap files in the *.bmp for-
mat as icons. Note that this format does not support multiple icons.

59

http://www.microangelo.us
http://www.heaventools.com


We might have overlooked other file formats that are supported by Win-
dows. However, we suggest to test other formats for compatibility as they
might not work all the way back to Windows 95 or on the NT/non-NT strain.
Sticking with one of these two formats should keep you out of trouble.

Apple

Apple Macintosh systems use the Macintosh PICT format, extension
*.pct. If you are working with an apple system you know a whole lot more
about this format than I do. If you don’t but would like to be able to install
your application on a Mac, simply start with any bitmap format that you
feel comfortable to work with. Then find an application that is capable of
converting this format into a *.pct file. I like to use Paint Shop Pro (PC
based), because it provides conversion capabilities among several dozen dif-
ferent file formats.

UNIX flavors

by Marc Eppelmann

As my knowledge, all X based Unix Window systems supports the (ASCII-
) XBM (X-Bitmap ) and the better XPM (X-PixMap) format. The modern
GUI systems like KDE and Gnome can display additionally a lot of other
ImageIcon formats, such as GIF, JPG, and PNG.

I suggest to use PNG, because this can lossless compress like the GIF
format, however this format is absolutely free. And not least, this can store
true transparency informations (It has an alpha channel).

4.2.3 Targets

So, you thought you could escape the ugly mess of operating system depen-
dencies at least with the way how your Java application is started? Sorry
but I have just another bad message. The one positive thing is that here you
have a way of escaping, even if doing so has a few less pretty side effects. At
first, I would like to discuss various launching options you have available on
different operating systems. At the end of the chapter I write about a way
to make launching your application OS independent.

Microsoft Windows

60



On Microsoft Windows you have a variety of options for launching your
application. Probably the most simple case is directly starting the Java VM
from the command line and typing out all parameters, such as class path,
the class name etc. In principle, this can be placed right in a shortcut and
should work.

A little more elegant solution is to place this in a batch file and have
the shortcut point to this batch file. This will also make it more likely that
users can repair or recreate shortcuts. Recreating shortcuts with sophisti-
cated command lines is practically impossible.

Another method is less commonly used but just as possible. Implement
a native executable that launches the VM with your Java application. The
VM comes as DLL and is used by java.exe in just the same way. As a sample
look at the exlipse.exe provided by the Eclipse-IDE

Clearly, even though the first option is a bit ugly and has some restric-
tionss, it is the most portable solution among the three.

Apple

We hope, there is a IzPack developer currently researching for the details
for the Mac environment. We expect an updated chapter in one of the next
releases.

UNIX

UNIX provides essentially the same options as Windows. You can sim-
ply use the command line option, you can write a shell script and you can
write a native launcher. Naturally this stuff is in no way compatible with
the equivalent Windows implementations. The native option is even more
problematic in this environment, since the code can not even be moved from
one UNIX platform to another, without recompilation.

OS Independent Launching

So, after all this rather discouraging news, there is actually a portable
way to launch Java applications? You bet! although I have to admit that it
is not necessarily the most pretty way of doing things.

This approach is currently used by IzPack. Package your application in a

61

http://www.eclipse.org


*.jar file if you don’t already do so and make it executable by including the
necessary METAINF/MANIFEST.MF information file. I am not going into
all the details on how exactly to do this, the Java documentation will have
to do. You might have noticed that even though the instructions to install
IzPack say to type :

java -jar IzPack-install.jar

You can just as well double click on IzPack-install.jar and it will start up.
This procedure will work on all GUI based Java supported operating systems
-though you might have to replace double clicking with dropping the file on
the VM. In just the same way, you can make the *.jar file itself the target of
a shortcut. Note: This works only, if jars are registered as files, which have
to launch by the installed JRE (with: javaw.exe -jar *)

The one restriction with this approach is that a *.jar file can only have
one main file. So, if you have multiple targets, they need to be packaged
each into a different *.jar file. They can be in one *.jar file but then you
have to start them explicitly, which gets you back to the problems that I
mentioned before. This brings me to the ugly part. If you have just one tar-
get, then you are all set. If you have multiple targets, you need to create a
*.jar file for each of them. In addition, you have a much harder time setting
the classpath, because each of the *.jar files that contain supporting code
must be listed. In fact, at present there is no way of setting this during the
installation, because IzPack does not yet (version 3.0) support the setting
and modification of environment variables.

4.2.4 Command Line

Before I start to write a lot about the use of command line arguments let
me state this: If you can avoid using them, do it! Not that there is anything
wrong with command line arguments as such. The issue is simply that if you
want your application to be usable cross platform (the big Java promise) you
should shy away from using command line arguments. The problem here is
that not all operating systems actually support command line arguments.
To be more precise, to my knowledge only Apple operating systems do not
support command line parameters. If you don’t care for running your ap-
plication on a Mac, then you might not worry about his at all. If you are
interested to support the Mac as well, read on.

62



In fact the Mac lower than MacOSX supports command line parameters
in a way. More to the point, it supports a single parameter that your appli-
cation should interpret as the name of a data file to open. You have no way
of supplying this to your application through the command line attribute.
The operating system generates this when the user drops the file on your
application and then passes it as command line argument. That’s it. This
same behavior will probably fly well on pretty much any system and should
therefore be an ok implementation.

So what to do if you want to modify program behavior based on runtime
switches? For one thing, you could set system properties accordingly. The
disadvantage here is the same as with the command line parameters: the
way of setting these might vary between operating systems. The best way
seems to be using a property file that contains the configuration data.

4.3 Trouble Shooting

by Elmar
It has been some time since I wrote this chapter during which a good

number of users had a chance to gather experience. Unfortunately I never
know how many have used it successfully without much difficulty. I only
hear from those that have encountered one problem or another. The type of
problems that I have seen prompted me to write this section, because I think
it will help you in locating most problems that you might encounter or at
least give you some idea where the problem might be located.

4.3.1 Problems You Can Solve

If you see an exception that essentially says that a library can not be loaded
(ShellLink.dll) you have an easy problem to deal with. Your installer file is
probably missing the native tag that adds the Windows dll to the installer
or something with this tag is no quite right. Read ’What to Add to the
Installer’ for all details on this topic.

Most other problems cause the ShortcutPanel not to show at all during
the installation process. The reason is simply that the ShortcutPanel skips if
it does not know what to do or if it has nothing to do (no point showing then
and confusing the user). The problem is that this is not always what you

63



intended. The most simple but not so uncommon case is, that the Shortcut-
Panel cannot find their spec file. This can be caused by a number of reasons.
The associated resource tag might be missing in the installer specification
file, the target file name might be misspelled (the name you specify for the
id attribute) or the target file name has a path or package name pre-pended.
You have only to use shortcutSpec.xml or Unix shortcutSpec.xml and
nothing else, just as described in ’What to Add to the Installer’. You can
always verify if this part is ok by inspecting the content of the installer *.jar
file. The file shortcutSpec.xml should be located in the directory res. This
inspection can be performed with any zip tool. If the file is not there, first
correct this before proceeding.

If the file is there and the panel does not appear, you have a problem
within the specification file. In most cases that I have seen, it comes down
to a spelling mistake of an attribute or tag name. You just have to carefully
make sure that everything is spelled correctly. Don’t forget that all names
are case sensitive! In a few cases it is also happend, that required or semi-
optional attributes are omitted, so you might want to verify if all attributes
that you need are actually supplied.

If everything is correct up to this point the problem becomes more elusive.
Most likely the panel will not be displayed, because it is instructed not to
show. There are be several reasons for this. The simple case is that no loca-
tion has been specified for the shortcuts in your installation. This can happen
if all five location attributes are omitted or if all the ones that are listed are
set to no. Remember, you have to specify at least one location for every
shortcut. If this is also correct, you might have used the <createForPack>

tag. Review the details in ’Selective Creation of Shortcuts’. One possibility
for the panel not to show is that based on the packs that are currently selected
for installation no shortcut qualifies for creation. In this case the panel will
not show, this is perfectly normal behavior. More likely this condition is true
because of some accident and not because it’s intended. Make sure the packs
that you list for the shortcut are actually defined in your installation and
verify that they are all spelled correctly. Remember: case matters! Did the
ShortcutPanel use to work in your installation and all of a sudden stopped
working? Very likely you are dealing with the last problem. A package name
might have been modified and the shortcut spec was not adjusted to stay in
sync.

64



4.3.2 Problems That Have No Solution (yet)

Unfortunately one problem has been very persistent and only recently one
user found the reason. The problem occurs when installing on some target
systems where non-English characters are used in the storage path for the
shortcuts. The problem is that these characters don’t seem to be properly
translated across the Java Native Interface. This leads to a situation where
the proper path can not be located and the shortcut creation fails. I write
’some target systems’ because it does not fail everywhere. After much ago-
nizing over this problem, one user found the solution: The shortcut creation
works fine if a Sun virtual machine is installed, but fails if a version from
IBM happens to be installed. So far I have no solution for this problem but
I am trying to find a workaround the problem.

4.3.3 A sample shortcut specification file for Unix

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>

<shortcuts>

<programGroup defaultName="IzForge/IzPack" location="applications"/>

<!-- Disabled since there is no Frontend
shortcut

name="IzPack"
programGroup="yes"
desktop="yes"
applications="no"
startMenu="yes"
startup="no"
target="$INSTALL_PATH/bin/izpack-fe.sh"
commandLine=""
workingDirectory="$INSTALL_PATH/bin"
description="Front-End for IzPack installation tool"
iconFile="$INSTALL_PATH/bin/icons/izpack.png"
iconIndex="0"
type="Application"
encoding="UTF-8"
terminal="true"
KdeSubstUID="false"
initialState="normal">
<createForPack name="Core"/>

</shortcut -->

<shortcut

65



name="IzPack Documentation"
programGroup="yes"
desktop="yes"
applications="no"
startMenu="yes"
startup="no"
target="konqueror"
workingDirectory=""
commandLine=""
initialState="noShow"
iconFile="help"
iconIndex="0"
url="$INSTALL_PATH/doc/izpack/html/izpack-doc.html"
type="Link"
encoding="UTF-8"
description="IzPack user documentation (HTML format)">

<createForPack name="Documentation-HTML"/>
</shortcut>

<shortcut
name="Documentation"
programGroup="yes"
desktop="yes"
applications="no"
startMenu="yes"
startup="no"
target="acroread"
workingDirectory=""
commandLine="$INSTALL_PATH/doc/izpack/pdf/izpack-doc.pdf"
initialState="noShow"
iconFile="acroread"
iconIndex="0"
url="$INSTALL_PATH/doc/izpack/pdf/izpack-doc.pdf"
type="Application"
encoding="UTF-8"
description="IzPack user documentation (PDF format)">

<createForPack name="Documentation-PDF"/>
</shortcut>

<shortcut
name="Uninstaller"
programGroup="yes"
desktop="yes"
applications="no"
startMenu="no"
startup="no"
target="/usr/lib/java/bin/java"

66



commandLine="-jar &quot;$INSTALL_PATH/Uninstaller/uninstaller.jar&quot;"
initialState="noShow"
iconFile="trashcan_full"
iconIndex="0"
workingDirectory=""
type="Application"
encoding="UTF-8"
description="IzPack uninstaller">
<createForPack name="Core" />

</shortcut>

</shortcuts>

67



Chapter 5

Creating Your Own Panels

5.1 How It Works

5.1.1 What You Need

First you have to read the NanoXML documentation if you need to use XML
in your panel. Secondly, it is necessary that you use the Javadoc-generated
class references. We will just explain here briefly how to start making your
panels.

It is a good idea to read the source code of some IzPack panels. They are
usually very small, which makes it easier to understand how to write your
own.

5.1.2 What You Have To Do

Extending IzPack with a panel is quite simple. A panel used with Iz-
Pack must be a subclass of IzPanel. The IzPanel class is located in the
com.izforge.izpack.installer package but your panels need to belong to
com.izforge.izpack.panels.

Things will get a good deal easier if you build IzPack with Jakarta Ant.
Simply add your class in the source tree and add the And directives to build
your own panels. In this way you’ll be able to focus on your code :-)

68



5.2 The IzPanel Class

5.2.1 UML Diagram

JPanel

IzPanel
#idata: InstallData
#parent: InstallerFrame
+IzPanel(parent:InstallerFrame,idata:InstallData)
+isValidated(): bool
+panelActivate(): void
+makeXMLData(panelRoot:XMLElement): void
+runAutomated(panelRoot:XMLElement): void

5.2.2 Description

The data members are : the install data (refer to the InstallData Javadoc
reference) and a reference to the parent installer frame. Additional there are
the initialFocus Component and some members for handling the grid bag
constraint.

The methods have the following functionality :

• (constructor) : called just after the language selection dialog. All the
panels are constructed at this time and then the installer is shown. So
be aware of the fact that the installer window is not yet visible when
the panel is created. If you need to do some work when the window is
created, it is in most cases better do it in panelActivate.

• isValidated returns true if the user is allowed to go a step further in
the installation process. Returning false will lock it. For instance the
LicencePanel returns true only if the user has agreed with the license
agreement. The default is to return true.

69



• panelActivate is called when the panel becomes active. This is the
best place for most initialization tasks. The default is to do nothing.

• makeXMLData is called to build the automated installer data. The
default is to do nothing. panelRoot refers to the node in the XML
tree where you can save your data. Each panel is given a node. You
can organize it as you want with the markups you want starting from
panelRoot. It’s that simple.

• runAutomated is called by an automated-mode installation. Each panel
is called and can do its job by picking the data collected during a pre-
vious installation as saved in panelRoot by makeXMLData.

• setInitialFocus with this method it is possible to set a hint which
component should be get the focus at activation of the panel. It is only
a hint. Not all components are supported. For more information see
java.awt.Component.requestFocusInWindow or java.awt.Component.requestFocus
if the VM version is less than 1.4.

• getInitialFocus returns the component which should be get the fo-
cos at activation of the panel. If no component was set, null returns.

Additional there are some helper methods to simplify grid bag layout han-
dling and creation of some common used components.

70



Chapter 6

User Input

(by Elmar Grom)

Most of the panels that come with IzPack take user input in some form.
In some panels this is through a simple user acknowledgment in others the
user can enter text or select a directory through a file open dialog. In all of
those cases the user input is used for the specific purpose needed by the panel
that takes the input. However, if you need user input during installation that
will later on be available to your application then you need to use the user
input panel.

To use this panel, list it in the install file with the class name UserInputPanel.
In addition, you must write a XML specification and add it to the install re-
sources. The name of this resource must be userInputSpec.xml.

The user input panel is a blank panel that can be populated with UI
elements through a XML specification file. The specification supports text
labels, input elements, explanatory text and some minor formatting options.

The following types of user input elements are supported:

• Text

• Combo Box

• Radio Buttons

• Check Box

• Rule Input Field

71



• Search Field

The way in which this panel conveys the user input to your application is
through the variable substitution system. User input is not directly inserted
into your configuration files but the variables that you specify for this panel
are set in the variable substitution system. After this operation has taken
place the variables and associated values are available for all substitutions
made. This way of operation has a number of implications that you should
be aware of.

First, not only can you set additional variables in this way but you can
also modify variables that are defined elsewhere -even built in variables. For
this reason you should be careful to avoid overlaps when choosing variable
names. Although there might be cases when it seems useful to modify the
value of other variables, it is generally not a good idea to do so. Because you
might not exactly know when other variables are set and when and where
they are used throughout the installation process, there might be unintended
side effects.

Second, the panel must be shown at a point during the installation process
before the variables are used. In most cases you will use the values to sub-
stitute variables in launch and configuration files that you supply with your
installation. For this to work you place this panel before the install panel,
because the install panel uses the variable substitutor to replace all such
variables. Although using this panel any later in the process will correctly
set the variables internally, there won’t be any affect on the files written to
disk. You can also use variables set in this way in other panels that you have
written yourself. There is a section in the chapter on writing your own panel
that explains how to do this. Also in this case it is important to place the
associated input panel in the process before the variables are used.

At this point I would also like to mention that it is possible to hide se-
lect elements on the panel or the panel altogether if certain packs are not
selected. For this to work you must place this panel after the packs panel.
One side effect of using this feature is that it is not possible to step back
once the user input panel is displayed. This is because the user might make
changes in the packs selection that would require a complete rebuild of the
UI. Unfortunately, building the UI is an irreversible process, therefore the
user can not be allowed to go back to the packs panel.

72



6.1 The Basic XML Structure

The top level XML section is called <userInput>. For most panels it does
not make sense to present them more than once, however you might want to
present multiple user input panels -with different content of course. There-
fore the <userInput> section can contain multiple tags that each specify the
details for one panel instance. The tag name for this is <panel>.

The <panel> tag uses the following attributes:

order - required

This is the order number of the user input panel for which this specifi-
cation should be used. Counting starts at 0 and increments by 1 for each
instance of the user input panel. So if a spec should be used for the second
occurrence of the user input panel use order="1".

layout - optional

There are three general layout rules this panel uses, they are left, center
and right. While I think left is most commonly used, you might want to ex-
periment with this attribute and see which you like best. The default is left.

6.2 Concepts and XML Elements Common

to All Fields

Before I dive into the details of defining the various UI elements I would like
to present XML elements and general concepts that apply throughout. This
saves me a lot of work in writing and you a lot of repetitive reading and
maybe a tree or two.

The UI elements are generally laid out top to bottom in the order they
appear in the XML file. The only exception to this rule is the title, which
always appears at the very top. The layout pattern for the input fields is as
follows: If a description is defined, it appears first, using the full available
layout width. The input field is placed beneath the description. With fields
such as the text field or the combo box, the label is placed to the left and
the input field to the right. Fields such as radio buttons and check boxes are

73



somewhat indented and have the label text appear to their right.

Each UI element is specified with a <field> tag. The type attribute is
used to specify what kind of field you want to place. Obviously, the type

attribute is not optional.

Each field that takes user input must also specify the variable that should
be substituted. This is done with the variable attribute.

Almost all fields allow a description. When a description is allowed it is
always added in the same way. The description is part of the data within
the field tag. There can only be one description per field. If you add more
than one, the first one is used and the others ignored. There are three at-
tributes used with this tag. The text is specified through the txt or the id

attribute. The details on using them are described below. The attributes are
all optional but you must specify text to use, either directly or through the
id attribute. In addition, you can set the text justification to left, center
and right with the align attribute.

The following example illustrates the general pattern for field specifica-
tion:

<field type="text" variable="myFirstVariable">
<description align="left" txt="A description" id="description 1"/>
.
.
.

</field>

A very frequently used pattern is for the definition of text. Where ever
text is needed (labels, descriptions, static text, choices etc.) it can be spec-
ified in place using the txt attribute. This is convenient if you are only
supporting a single language. However, if you would like to separate your
text definitions from the panel specification or if you need to support multi-
ple languages you might want to use the id attribute instead to only specify
an identifier. You can then add multiple XML files with the same name as
this spec file (userInputSpec.xml) appended with an unserscore ’ ’ and the
the appropriate three letter ISO3 language code. The content of those files
must conform to the specification for IzPack language packages. For more
details on this topic see the chapter on language packages under advanced
features. id defines an identifier that is also defined in the language package,

74



together with the localized text to use. It is possible to use both the txt and
the id attribute. In this case the text from the language package is used. If
for some reason the language package is not available or the id is not defined
there, the text specified with txt is used as default.

All input fields can be pre-set with a value of your choice. Although the
details vary a bit from field type to field type, the set attribute is always
used to accomplish this. The set attribute is of course optional.

All fields that take user input use a <spec> tag to define the details of
the input field. In the some cases the content of this tag is rather simple.
Input fields with a more complex nature tend to have accordingly complex
content in this tag. Since the details vary widely, they are explained with
each input field.

Any number of <createForPack name=’’a pack name’’ /> tags can
be added to the <panel> and <field> sections. This tag has only one at-
tribute and no data. The attribute is name and specifies the name of one
of the installation packs that you have defined. Here is how it works: if no
<createForPack ...> tag exists in a section, the entity is always created.
However, if the tag exists, the entity is only created if one or more of the
listed packs are selected for installation. As mentioned before, if you are
using this feature, make sure the user input panel shows up after the packs
panel.

6.3 Internationalization

To provide internationalization you can create a file named userInputLang.xml xyz

where xyz is the ISO3 code of the language in lowercase. Please be aware
that case is significant. This file has to be inserted in the resources section
of install.xml with the id and src attributes set at the name of the file.

Example:

If you have the following userInputSpec.xml and you want to interna-
tionalize input.comment, input.proxy, input.port for english and french
you have to create two files named userInputLang.xml eng and userInput-
Lang.xml fra:

<userInput>

75



<panel order="0">

<field type="staticText" align="left" txt="My comment is here." id="input.comment"/>

<field type="text" variable="proxyAddress">

<spec txt="Proxy Host:" id="input.proxy" size="25" set=""/>

</field>

<field type="text" variable="proxyPort">

<spec txt="Proxy Port:" id="input.port" size="6" set=""/>

</field>

</panel>

</userInput>

userInputLang.xml eng file contains:

<langpack>

<str id="input.comment" txt="English:My comment is here."/>

<str id="input.proxy" txt="English:Proxy Host:"/>

<str id="input.port" txt="English:Proxy Port:"/>

</langpack>

userInputLang.xml fra file contains:

<langpack>

<str id="input.comment" txt="French:My comment is here."/>

<str id="input.proxy" txt="French:Proxy Host:"/>

<str id="input.port" txt="French:Proxy Port:"/>

</langpack>

you will also have to add the following to the install.xml file

<resources>

...

<res id="userInputSpec.xml" src="userInputSpec.xml"/>

<res id="userInputLang.xml_eng" src="userInputLang.xml_eng" />

<res id="userInputLang.xml_fra" src="userInputLang.xml_fra" />

...

</resources>

6.4 Panel Title

You can place an optional title at the top of the panel. Though it is not pos-
sible to select a font for the title that is different form the one used on the rest
of the panel, it is possible to modify the font to some extent. To specify the

76



title create a <field> tag and use the type attribute with the value title. In
addition to the txt and id attributes, the following attributes are supported:

italic - optional

With a value of true specifies that the title font should be in italics.

bold - optional

With a value of true specifies that the title font should be bold.

size - optional

This attribute specifies the size of the title font. Please note that the size
is not specified in points but as a relative size multiplier compared to the
body font on the panel. The default value is 2.

6.5 Static Text

Static text is simply text that is placed on the panel without direct con-
nection to any of the input elements. It is laid out to use the entire layout
width available on the panel and is broken into multiple lines if necessary.
To specify static text create a <field> tag and use the type attribute with
a value of staticText. In addition to the txt and id attributes, the text
can be justified left, center or right with the align attribute. It is not
possible to format this text in any way.

Example

The following example inserts some static text in the panel.

<field type="staticText" align="left"
txt="This is just some simple static text."
id="staticText.text"/>

6.6 Visual Separation

Sometimes it is desirable to separate different entities visually. This can be
accomplished by inserting a space or a divider. A space simply inserts a

77



vertical separation of the average height of a single line entity, such as a line
of text or a an input field. A divider inserts the same amount of space but
also draws a division line which can be either aligned at the top or bottom
of the separation. <space>, <divider>

..... maybe I should draw the line myself and add no additional space at
all ...

6.7 Text Input

A text input field allows the user to enter and edit a single line of text, with-
out length restriction. The input field can have a label, which will show to
the left of the input field and a description, which can span multiple lines.
The description is placed above the input field and uses the entire available
layout width. The width of the input field must be explicitly set, otherwise it
will only accommodate a single character. To specify a text input field create
a <field> tag and use the type attribute with a value of text. The txt and
id attributes are not supported here. The variable attribute specifies the
variable that should be replaced with the text taken from the input field.

The Data

The data consists of two items, a description and the spec. The <spec>

tag uses four attributes. The label text is specified with txt and/or id as
described above. In addition, the width of the input field as it appears on
the panel can be set with the size attribute. The value must be an integer
and sets the field width based on the average character width of the active
font. If this is not specified, then you will end up with a very narrow field
that is practically unusable.

The fourth attribute set is optional. It takes a text string to pre-fill the
input field.

Example

The following example creates a text input field with a label and de-
scription. The width of the input field will be enough to accommodate 15
characters. The field will be pre-set with the text ’some text’ when the UI
is first presented.

<field type="text" variable="textInput">

78



<description align="left" txt="A description for a text input field"
id="description.text"/>

<spec txt="Enter some text:" id="text.label" size="15" set="some text"/>
</field>

6.8 Radio Buttons

The radio buttons are useful when the user needs to select a specific option
out of a pre-defined list of choices. This field offers an arbitrary number of
mutually exclusive buttons, each with its own label. The placement of the
buttons and labels is different form other fields. First, the button is placed
to the left and the label text to the right. Second, the buttons are not lined
up all the way to the left as other labels are but they are indented from
that location. As with other fields, the description is placed above the list of
radio buttons and uses the entire available layout width. To specify a set of
radio buttons create a <field> tag and use the type attribute with a value
of radio. The txt and id attributes are not supported here. As with all
other input fields, the variable attribute specifies that variable that should
be replaced with the user selection.

The Data

The data consists of two items, a description and the spec. The <spec>

tag has no attributes, instead the specification details are entered as data
within the <spec> tag. The <spec> data consists of one or more <choice>

tags. One <choice> tag is required for each radio button. The <choice>

tag accepts the usual txt and id attributes, which are used to specify the
label text. In addition the following attributes are supported:

value - required

The value attribute is used to specify which value to insert if this asso-
ciated radio button is selected. In other words, the label text has nothing to
do with the value that is actually substituted for the variable. For this reason
there is never an issue if multiple languages are used, the value is always the
same for a given selection.

set - optional

The set attribute accepts the values true and false. Since the attribute
is optional it can also be omitted, which is interpreted as false. If a value

79



of true is used, the associated radio button will be selected when the UI is
first presented. Obviously, only one of the buttons in a set should be set to
true.

Example

The following example creates a set of four radio buttons with descrip-
tion. The second button will be selected when the UI is first presented.

<field type="radio" variable="radioSelection">
<description align="left" txt="This is a description for radio buttons"

id="description.radio"/>
<spec>
<choice txt="the first choice" id="radio.label.1" value="1 selected" />
<choice txt="the second choice" id="radio.label.2" value="2 selected"

set="true" />
<choice txt="the third choice" id="radio.label.3" value="3 selected" />
<choice txt="the fourth choice" id="radio.label.4" value="4 selected" />
</spec>

</field>

6.9 Combo Box

The combo box provides essentially the same functionality as do the radio
buttons, just in a different presentation stile. The advantage of the combo
box is that it is easier to deal with a long list of choices.

6.10 Check Box

If there are a number of choices and any combination of them could be se-
lected, not just a single one, then radio buttons are not the way to go. You
might be better off using a number of check boxes. The layout for a check
box works in the same way as for radio buttons. The check box is placed
indented from the left most edge and the label text is placed to the right of
it. Other than with radio buttons, you cannot define any number of check
boxes. This field allows the definition of only one check box, which is associ-
ated with one variable. If you need multiple check boxes you need to define
one field for each of them. To make it look like a cohesive group you simply
provide a description only for the first check box. All of the check boxes will
be positioned in such a way that they look like a group, even though they

80



are separate entities and their selections are conveyed to different variables.
The description is placed above the check box and uses the entire available
layout width. To specify a check box create a <field> tag and use the type

attribute with a value of check. As with all other input fields, the variable
attribute specifies the variable that should be replaced with the user input.

The Data

The data consists of two items, a description and the spec. The <spec>

tag accepts the usual txt and id attributes, which are used to specify the
label text. In addition, the following attributes are supported:

true - required

The true attribute specifies the value to use for substitution when the
box is selected.

false - required

The false attribute specifies the value to use for substitution when the
box is not selected.

set - optional

The set attribute accepts the values true and false. Since the attribute
is optional it can also be omitted, which is interpreted as false. If a value
of true is used, the check box will be selected when the UI is first presented.

Example

The following example creates a check box with description. The check
box will not be selected when the UI is first presented. This could also be
accomplished by omitting the set attribute.

<field type="check" variable="chekSelection.1">
<description align="left" txt="This is a description for a check box"

id="description.check.1"/>
<spec txt="check box 1" id="check.label.1" true="on" false="off"

set="false"/>
</field>

81



6.11 Rule Input

The rule input field is the most powerful and complex one of all the input
fields offered by this panel. In its most simple incarnation it looks and works
like a regular text input field. There is also only an incremental increase of
the complexity in the specification for this case. However, it is unlikely that
you would use it for such a purpose. The real power of this input field comes
from the fact that rules can be applied to it that control many aspects of its
look as well as overt and covert operation.

6.11.1 Layout and Input Rules

The basic nature of this input field is that of a text input field and as men-
tioned before, in its most simple incarnation that is what it looks like and
how it operates. However, the layout of the field can be defined in such a
way that there are multiple logically interconnected text input fields, adorned
with multiple labels. Further more, each of these fields can be instructed to
restrict the type of input that will be accepted. Now you might ask what
this could be useful for. As an answer, let me present a few examples that
show how this feature can be used. Before I do this however, I would like
to describe the specification syntax, so that the examples can be presented
together with the specifications that make them work in a meaningful way.

The actual specification of the layout, the labels and the type of input
each field accepts all happens in a single string with the layout attribute.
First let us have a look at the specification format for a single field. This
format consists of a triplet of information, separated by two colons ’:’. A
typical field spec would look like this: N:4:4, where the first item is a key
that specifies the type of input this particular field will accept - numeric
input in the example. The second item is an integer number that specifies
the physical width of the field, this is the same as in the with of any regular
text field. Therefore the field in the example will provide space to display
four characters. The third item specifies the editing length of the string or in
other words, the maximum length of the string that will be accepted by the
field. In the layout string you can list as may fields as you need, each with
its own set of limitations. In addition you can add text at the front, the end
and in between the fields. The various entities must be separated by white
space. The behavior of this field is such that when the editing length of a
field has been reached, the cursor automatically moves on to the next field.
Also, when the backspace key is used to delete characters and the beginning

82



of a field has been reached, the cursor automatically moves on to the previous
field. So let us have a look a some examples.

Phone Number
The following specification will produce a pre formatted input field to ac-

cept a US phone number with in-house extension. Even though the pattern
is formatted into number groups as customary, complete with parentheses ’(’
and dash ’-’, entering the number is as simple as typing all the digits. There
is no need to advance using the tab key or to enter formatting characters.
Because the fields only allow numeric entry, there is a much reduced chance
for entering erroneous information. "( N:3:3 ) N:3:3 - N:4:4 x N:5:5".
Each of the fields uses the ’N’ key, indicating that only numerals will be
accepted. Also, each of the fields only accepts strings of the same length as
the physical width of the field.

E-Mail Address
This specification creates a pattern that is useful for entering an e-mail

address "AN:15:U @ AN:10:40 . A:4:4". Even though the first field is
only fifteen characters wide it will accept a string of unlimited length, be-
cause the ’U’ identifier is used for the edit length. The second field is a bit
more restrictive by only accepting a string up to forty characters long.

IP Address
It might not be uncommon to require entering of an IP address. The fol-

lowing simple specification will produce the necessary input field. All fields
are the same, allowing just three digits of numerical entry. "N:3:3 . N:3:3

. N:3:3 . N:3:3"

83



Serial Number or Key Code
If you ship your product with a CD key code or serial number and re-

quire this information for registration, you might want to ask the customer to
transcribe that number from the CD label, so that it is later on accessible to
your application. As this is always an error prone operation, the predefined
pattern with the easy editing support and restriction of accepted data helps
to reduce transcription errors "H:4:4 - N:6:6 - N:3:3". This particular
specification will produce three fields, the first accepting four hexadecimal,
the second six numerical and the third three numerical digits.

Limitations
Even though the above examples all use single character labels between

fields, there is no restriction on the length of these labels. In addition, it is
possible to place label text in front of the first field and after the last field
and the text can even contain spaces. The only limitation in this regard is
the fact that all white space in the text will be reduced to a single space on
the display. This means that it is not possible to use multiple spaces or tabs
in the text.

The following table lists and describes all the keys that can be used in
the specification string.

Key Meaning Description
N numeric The field will accept only numerals.
H hexadecimal The field will accept only hexadecimal numerals,

that is all numbers from 0-F.
A alphabetic The field will accept only alphabetic characters.

Numerals and punctuation marks will not be ac-
cepted.

AN alpha-numeric The field will accept alphabetic characters and nu-
merals but no punctuation marks.

O open The filed will accept any input, without restriction.
U unlimited This key is only legal for specifying the editing

length of a fields. If used, the field imposes no
length restriction on the text entered.

84



6.11.2 Setting Field Content

Like all other input fields the rule input field can also be pre-filled with data
and as usual, this is accomplished thought the set attribute. As you might
expect, the details of setting this field are rather on the complicated side. In
fact you can set each sub field individually and you can leave some of the
fields blank in the process. The set specification for all sub fields is given in
a single string. Each field is addressed by its index number, with the count
starting at 0. The index is followed by a colon ’:’ and then by the content of
the field. The string ”0:1234 1:af415 3:awer” would fill the first subfield with
1234, the second one with af415 and the fourth with awer. The third sub-
field would stay blank and so would any additional fields that might follow.

The individual field specs must be separated with spaces. Spaces within
the pre-fill values are not allowed, otherwise the result is undefined.

6.11.3 The Output Format

The user input from all subfields is combined into one single value and used
to replace the variable associated with the field. You can make a num-
ber of choices when it comes to the way how the subfield content is com-
bined. This is done with the resultFormat and separator attributes. The
resultFormat attribute can take the following values:

Value Meaning
plainString The content of all subfields is simply concatenated

into one long string.
displayFormat The content of all subfields and all labels -as

displayed- is concatenated into one long string.
specialSeparator The content of all subfields is concatenated into

one string, using the string specified withe the
separator attribute to separate the content of the
subfields.

processed The content is processed by Java code that you sup-
ply before replacing the variable. How to do this is
described below.

85



6.11.4 Validating the Field Content

You can provide runtime validation for user input into a rule field via the
validator element (which is a child of the field element. There are two
types of built-in validators already provided: a NotEmptyValidator and a
RegularExpressionValidator. You can also easily create your own valida-
tor. In all cases, if the chosen validator returns false, a messagebox will
display the contents of the txt attribute and the user will be unable to con-
tinue to the next panel.

You can specify a processor for a combobox:

<choice processor="fully.qualified.class.name"

set="selectedValue"/>

so that you can fill a combobox with data on a simple way.

NotEmptyValidator

The NotEmptyValidator simply checks that the user entered a non-null value
into each subfield, and returns false otherwise.

RegularExpressionValidator

The RegularExpressionValidator checks that the user entered a value
which matches a specified regular expression, as accepted by the Jakarta
Regexp library (http://jakarta.apache.org/regexp/). The syntax of this
implementation is described in the javadoc of the RE class (http://jakarta.
apache.org/regexp/apidocs/org/apache/regexp/RE.html).

You can specify the regular expression to be tested by passing a param-
eter with a name of pattern to the validator (via the param element), with
the regular expression as the value attribute. For example, the following
would validate an e-mail address:

<field type="rule" variable="EMAILADDRESS">
<spec

txt="Your Email Address:" layout="O:12:U @ O:8:40 . A:4:4"
set="0: 1:domain 2:com" resultFormat="displayFormat"

/>
<validator class="com.izforge.izpack.util.RegularExpressionValidator"

txt="Invalid email address!">
<param

86

http://jakarta.apache.org/regexp/
http://jakarta.apache.org/regexp/apidocs/org/apache/regexp/RE.html
http://jakarta.apache.org/regexp/apidocs/org/apache/regexp/RE.html


name="pattern"
value="[a-zA-Z0-9._-]{3,}@[a-zA-Z0-9._-]+([.][a-zA-Z0-9_-]+)*[.][a-zA-Z0-9._-]{2,4}"

/>
</validator>

</field>

You can test your own regular expressions using the handy applet at
http://jakarta.apache.org/regexp/applet.html .

Creation Your Own Custom Validator

You can create your own custom Validator implementation simply by creating
a new class which implements the com.izforge.izpack.panels.Validator
interface. This interface specifies a single method: validate(ProcessingClient
client) , which returns a boolean value. You can retrieve the value entered
by the user by casting the input ProcessingClient as a RuleInputField and
calling the
RuleInputField.getText() method. You can also retrieve any parameters
to your custom Validator by calling the
RuleInputField.getValidatorParams() which returns a java.util.Map

object containing parameter names mapped to parameter values. For an ex-
ample, take a look at
com.izforge.izpack.util.RegularExpressionValidator.

Set values in the RuleInputField can be preprocessed. At now you can
specify a processor class to pre process a value to be set at initial value of a
RuleInputField. Syntax:

<spec set="0:defaultVal:classname" .../>

The class name is an optional value. The class must implement the Processor
interface.

6.11.5 Processing the Field Content

This feature needs to be documented.

6.11.6 Summary Example

<field type="rule" variable="test1">
<description align="left" txt="A description for a rule input field."

87

http://jakarta.apache.org/regexp/applet.html


id="description.rule.1"/>
<spec txt="Please enter your phone number:"

layout="( N:3:3 ) N:3:3 - N:4:4 x N:5:5"
resultFormat="specialSeparator" separator="."/>

<validator class="com.izforge.izpack.util.NotEmptyValidator"
txt="The phone number is mandatory!" />

<!--processor class=""/-->
</field>

6.12 Search

The search input field allows the user to choose the location of files or di-
rectories. It also supports auto-detection of the location using a list of sug-
gestions. The field is basically a combobox with an extra button to trigger
auto-detection (again).

6.12.1 Specification

The <description> tag is the same as with other fields (see 6.2 on page 74).
The <spec> tag supports the following attributes:

• filename - the name of the file or directory to search for

• type - what to search for

– file - search for a file

– directory - search for a directory

• result - what to return as the search result

– file - result of search is whole pathname of file or directory found

– directory - only return directory where the file was found (this
is the same as file when searching for directories)

– parentdir - return the full path of the parent directory where the
file was found

• checkfilename - the name of a file or directory to check for existence
(this can be used to validate the user’s selection)

88



6.12.2 Example

<field type="search" variable="java_sdk_home">
<description align="left"

txt="This is a description for a search input field."
id="description.java_sdk_home"/>

<spec txt="Path to Java SDK:" checkfilename="lib/tools.jar"
type="file" result="directory">

<choice value="/usr/lib/java/" os="unix" />
<choice value="/opt/java" os="unix" />
<choice value="C:\Program Files\Java" os="windows" />
<choice value="C:\Java" os="windows" />
</spec>

</field>

89



Chapter 7

Custom Actions

(by Klaus Bartz)

7.1 Overview

In general the installation procedure is separated into several steps. The first
step, let’s call it the data collection phase, is getting specific data needed for
the installation process. Typically this is done by typing all neded data into
one or more panels, if a GUI is used, or automatically by reading the data
from a config file. In general nothing will be changed on the system until all
needed data is obtained. But mostly - depending on to the information, e.g.
the destination path - different input panels are involved.

If all needed data is collected the second step will be perfomed, let us
call it the action phase. During this step the state of the locale machine will
be changed, e.g. files will be copied to the installation destination or some
short cuts will be registered. Each of this subsequent steps are denoted as
actions. There are actions intended to be reused, so called common actions,
and actions for one special purpose only, so called custom actions. In IzPack
there are already some common actions, for example ”file transfer”, ”parse”
or ”execute”.

The third step, the reporting phase, is normally represented by a panel
that reports the result state of the installation (OK, or not OK) and a simple
good bye message.

With IzPack there are two ways to implement custom actions. Firstly it
is always possible to define a custom panel that perfoms the desired actions
too. Secondly, and that’s the new, custom actions are supported.

Panels still may be used for actions that are perfomed, e.g. before files
are transferred or after the ”execute” action. But if the needed action de-

90



pends on the selected or already installed packages, this works also, but the
implementation effort is much higher.

If the action should be performed for several amount of elements of a
pack, using custom actions will be more easy than using panels. Additional
custom actions may be defined for installation, but also for packaging and
uninstallation purposes. If a custom action is also needed for uninstallation
purposes, it’ll be always a good idea to implement a corresponding installa-
tion action as custom action, but not as panel.

7.2 How It Works

Custom actions are implemented as listeners. Each listener implements
callback methods that will be called at well-defined points. The method
InstallerListener.afterFile for example will be called after a file has
been copied. There are different interfaces intended for being used at pack-
aging time, at installation time and at uninstallation time.

Each interface is implemented by a class with the prefix ”Simple” (e.g.
SimpleCompilerListener) that implements all declared interface methods with
an empty body. These classes may be used as base classes for own listener
implementations.

To apply custom actions to the installer, an entry in the apropriate in-
stall.xml file is needed. The configuration of listeners starts with the facul-
tative ELEMENT ”listeners” which can contain one or more ELEMENTs of
”listener”. For a ”listener” there are three attributes which determine the
”compiler”, ”installer” and ”uninstaller” custom action pupose. Additionally
it is possible to make the listener OS dependent using the ”os” ELEMENT.

If file related data will be set, the facultative ELEMENT ”additionaldata”
is defined for the ELEMENTs ”file”, ”singlefile” and ”fileset”. This data
will be automatically moved to the corresponding PackFile objects in the
install.jar. Extraction and usage should be implemented in a install custom
action (see example).

7.2.1 Custom Action Types

Custom actions are intended to be used at packaging time, at installation
time and at uninstallation time. The interfaces are:

Custom action type Interface name
Packaging com.izforge.izpack.event.CompilerListener

Installation com.izforge.izpack.event.InstallerListener

Uninstallation com.izforge.izpack.event.UninstallerListener

91



Custom Actions At Packaging

UML Diagram

Description

• (constructor) : only the default constructor will be used. It is called
from Compiler just after creating the packager. Therefore initializing
will be better during in the first notify call.

• reviseAdditionalDataMap gives the facility to add data to each PackFile

object. This is the place where file related data can be transferred
from the install xml file into the install jar file. Although each key
and value of the map can be any type, but the class definitions of all
used types must therfore be contained in the installer jar file or in
the VM’s classpath. In general strings are the best choice for being
used as keys or values. All keys must be unique over all registered
CompilerListeners. Each call of this method adds own key value
pairs to the given existenDataMap because more than one listener can
be used. If the given map is null, a new one will be created.

• notify is called at the beginning and at the end of each ”add” method
call which is called in Compiler.executeCompiler.

Custom Actions At Installing Time

UML Diagram

92



Description

• (constructor) : only the default constructor will be used. It is called
from Unpacker.run before unpacking.

• beforePacks will be called each time before an unpacking call is per-
formed.

• beforePack is called before a package is installed. Pack object and the
number of the pack are passed.

• isFileListener determines whether the next four methods are called
or not. This is a little performance optimizing.

• beforeDir is called before a directory is created. In this case, when
file listeners exist, directories are created recursively and the method
is called at each step. The file and the current PackFile object are
passed.

• afterDir is called directly after the directory creation.

• beforeFile is called before a file is created. The file and PackFile

object are passed as parameters.

93



• afterFile is the best place to perform file related actions. The given
PackFile objects contains the additional data which was set at pack-
aging.

• afterPack will be just called after the pack is closed.

• afterPacks is the last step before the handler will be stopped.

Custom Actions At Uninstalling Time

UML Diagram

Description

• (constructor) : only the default constructor will be used. It is called
from Destroyer.run as first call.

• beforeDeletion will be called after execute files was performed. The
given list contains all File objects which are marked for deletion.

• isFileListener determines whether the next two methods are called
or not.

• beforeDelete is the method which, is called before a single file is
deleted. The File object is given as parameter.

• afterDelete will be invoked after the delete call for a single file.

• afterDeletion is the last call before the cleanup of created data is
performed.

94



7.2.2 Package Path

Custom actions must always implement one of the given listener interfaces.
As mentioned above, it is also possible to derive from one of the ”Simple”
listeners. The package path is facultative, only the class name must be unique
over all custom actions. The preparation of a custom action for providing it
with an installation is very similar to panels. Custom actions must also be
packed into a jar file with the name of the custom action class name. This
jar file should be placed in [IzPackRoot]/bin/customActions, may be

[IzPackRoot]/bin/customActions/MyCompilerListener.jar

[IzPackRoot]/bin/customActions/MyInstallerListener.jar

[IzPackRoot]/bin/customActions/MyUninstallerListener.jar

In the default Ant definition file (build.xml) there are some targets for this
stuff.

7.2.3 Correlated Stuff

Native Libraries for Uninstallation

If a custom action uses JNI at installation time, often the associated uninstall
custom action needs JNI too. For this situation it is possible to declare
a native library for unstallation. The only work to do is to add a stage
attribute to the native tag in the install xml file like

<!-- The native section. We specify here our os dependant
libs..--> <native type="3rdparty"
name="MyOSHelper.dll"stage="both" >

<os family="windows" />
</native>

The needed additional classes are packed into lib/uninstaller-ext.jar. If a
native library is defined for uninstallation, this file will also be packed into
the installer.jar as IzPack.unistaller-ext and used at its right position.

7.3 What You Have To Do

Follow the steps that are needed to create and use custom actions with
the ”normal” source environment (not standalone compiler) using Ant. Of
course, it works also with the standalone compiler.

95



7.3.1 Custom Actions at Packaging (CompilerListener)

• Implement com.izforge.izpack.event.CompilerListener or extend
com.izforge.izpack.event.SimpleCompilerListener. Place it as
[IzPackRoot]/src/lib/[MyPackagePath]/MyCompilerListener.java.

• Add a ”compile.simple” antcall in to [IzPackRoot]/src/build.xml.

<antcall target="compile.listener.simple">
<param name="listener" value="MyCompilerListener"/>
<param name="listener-dir" value="MyCompilerListener"/>
<param name="listener-include" value="[MyPackagePath]"/>

</antcall>

• Run [IzPackRoot]/src/build.xml.

• Add a ”listeners” ELEMENT with a ”listener” ELEMENT with a
”compiler” attribute in to [MyProjectPath]/install.xml

<listeners>
<listener compiler="MyCompilerListener" />

<listeners>

• Compile with

java -jar [IzPackRoot]/lib/compiler.jar -HOME [IzPackRoot]
[MyProjectPath]/install.xml -b [MyProductPath] -o
[MyBuildPath]/install.jar

• Test it

7.3.2 Custom Actions at Installation Time (InstallerLis-
tener)

Perform the same steps as described in 7.3.1, replace all occurrences of ”Com-
pilerListener” with ”InstallerListener” and ”compiler” with ”installer”.

7.3.3 Custom Actions at Uninstallation Time (Unin-
stallerListener)

Perform the same steps as described in 7.3.1, replace all occurrences of ”Com-
pilerListener” with ”UninstallerListener”and ”compiler” with ”uninstaller”.

96



7.4 Example

Let us say, we want to set access rights for files and directories on Unix. The
Java sources are placed in the directory
[IzPackRoot]/sample/src/com/myCompany/tools/install/listener. There
are the files ChmodCompilerListener.java and ChmodInstallerListener.java.

• Copy the files too [IzPackRoot]/src/lib/com/myCompany/tools/install/listener

• In [IzPackRoot]/src/build.xml there are the lines

<!-- CUSTOM ACTION test START
CUSTOM ACTION test END -->

Uncomment them (activate the lines between them).

• Build IzPack new.

• Compile a test installation with

java -jar [IzPackRoot]/lib/compiler.jar -HOME [IzPackRoot]
[IzPackRoot]/sample/listener/install.xml
-b [IzPackRoot]/sample/listener -o
[IzPackRoot]/sample/listener/install.jar

• Install it

java -jar install.jar

7.5 Ant Actions (InstallerListener and Unin-

stallerListener)

In this section the common ant task custom actions are described in detail.
It is only for developers who are not acquainted with IzPack or it’s custom
actions. In addition to the basics there are some recapitulations of the com-
mon custom action techniques and some hints for pitfalls.
In the package com.izforge.izpack.event there are the ant related custom
actions AntActionInstallerListener and AntActionUninstallerListener.
As recapitulation, to add any custom action a reference in install.xml will be
needed, as example:

97



<listeners>
<listener installer="AntActionInstallerListener"

uninstaller="AntActionUninstallerListener" />
</listeners>

For all referenced listeners a jar file with the same name must exist in
[IzPackRoot]/bin/customActions. If compilation (packaging) fails with a
”not found” error, first verify, that the jar file exists. If not, create it.
With this custom action it is possible to perform ant calls at installation
and/or uninstallation time. It is not only a wrapper for a comand-line ant
call, but also an intersected description file defining what target of the ant
build file should be performed at what time of (un)installation and spec-
ifies which properties for what IzPack pack are to be used. The inter-
sected description file is written as XML, the corresponding dtd is placed
in src/dtd/event/antaction.dtd. The description file should be declared as a
resource in the install.xml with the id AntActionsSpec.xml e.g.

<resorces>
...
<res id="AntActionsSpec.xml" src="myInstallSpecs/MyAntActionsSpec.xml" />
...

</resorces>

The precise spelling of the id is important. The base path of src is the
installation project path. If you want to use ant, you have to specify it here.
IzPack is designed for running without dependencies on external software or
libraries. Therefore it is necessary to include everything needed, in this case
ant self. The field <jar> in installation.xml is predestinated for such cases,
e.g.

<jar src="jar/ant/ant.jar" stage="both" />

Be aware, that an ”extended” ant use needs more than one jar, for ex-
ample often xercesImpl.jar. If an obscure ”class not found” exception is
raised during testing, check first for missing jar files.
For supporting uninstallation the jar field was extended by the attribute
stage. If an ant uninstaller custom action is used, the uninstaller also needs
the jar files. If stage is ”both” or ”uninstall”, the contents of the referenced
jar file will be packed into uninstaller.jar. Be aware that not the jar file itself,
but the contents of it are required. This implies, that the paths of the con-
tained files are unique and the information in meta-inf/Manifest.mf will
be lost.

98



7.5.1 The Basic XML Struture

An ant action will be defined in the resource with the id ”AntActionsSpec.xml”.
Sometimes it will help to lock into [IzPackRoot]/src/dtd/event/antaction.dtd
or validate a written xml file with the dtd.
On this xml file a substitution will be performed using all defined IzPack

variables. It is performed just before processing the packs. This is a com-
mon way of loading spec files into custom actions. For more information see
method com.izforge.izpack.util.SpecHelper.readSpec. If you want to
substitute some custom item, simply add a variable via idata.setVariable in
a custom panel before InstallPanel. The given variable name (id) should
be written into the xml file in the common variable notation.

The top level XML section is called <antactions>. Only one is possible.
The <antactions> are segregated in one or more <pack> elements. The
single attribute <name> of the <pack> corresponds to the same structure in
install.xml (for more information see also installation.dtd). Only the ”things”
included in the <pack> are performed, if a pack with the same name was
chosen to be installed. The ”things” to be done to self are defined by the
element <antcall> (without ssss).
The <antcall> takes the following attributes:

• order: required. Determine at what point of installation the antcalls
defined by element target should be performed. Possible are beforepack,
afterpack, beforepacks or afterpacks. Be aware that with be-
forepack(s) there are no installed files and also no installed build file.
With this order only preexistent build files are useable.

• uninstall order: optional. Determine at what point of uninstalla-
tion the antcalls defined by element uninstall target should be per-
formed. Possible are beforedeletion and afterdeletion. As op-
posed to the behaviour of order the referenced files are also accessible
in the order afterdeletion. The uninstaller action copies the files
into tempfiles before deletion which are marked as deleteOnExit.

• quiet: optional. To quit or not. Possible are yes or no. Default is no.

• verbose: optional. To output verbose information or not. Possible are
yes or no. Default is no.

• logfile: optional. Path of the file for logging should be performed.
The logfile should be not marked for uninstallation otherwise it will be
deleted too.

99



• buildfile: required. Path of the file which contains the antcall. This
is the file you normally use as -buildfile during an ant call via the
command line. In this file variables are not substituted. For substi-
tution there are properties in ant which can be used. Never write an
IzPack variable in an ant buildfile.

• messageid: optional. A string ID which refers to
bin/langpacks/installer/<lang>.xml. If it is defined, the message
will be displayed in the InstallPanel whilst performing the ant call.

In addition to the possible attributes there are some elements. All elements
can be defined more than one time in one <antcall>. All are optional, but
with no <target> element the <antcall> makes no sense. Do not confuse
the following: ”required”s are related to the attributes of the elements, not
to the elements themselfs.

<property>: define a property

Property to be used with all targets and uninstall targets which are
defined for this antcall.

• name: required. The name (id) of the property.

• value: required. The value of the property.

<propertyfile>: define properties in a file

Properties to be used with all targets and uninstall targets which are defined
for this antcall given by the path of a properties file.

• path: required. Path of a file which contains properties in the syn-
tax which is used by ant. Some ant calls need properties files. For
these this element is used. One way to fill specific data into it is to
create a new file in a custom panel and fill it with values given by
input fields. The file path can be set at installation time, if there is
a variable in AntActionSpec.xml and an IzPack variable was defined
before InstallPanel. That file can be only created with deleteOnExit, if
no <uninstall target> was defined in this <antcall>. This implies,
that other <antcall>s can have a <uninstall target>.

100



<target>: target to call at installation

Targets to perform with this antcall at installation time. The targets should
be defined in the given buildfile or else an ant exception will be raised. This
is that what you use, if you don’t want to perform the default target. e.g.
cleaning the IzPack project with ant clean

• name: required. The name of the target.

<uninstall target>: target to call on uninstallation

Targets to perform with this antcall at uninstallation time. The targets
should be defined in the given buildfile otherwise an ant exception will be
raised. With this target it will be possible to undo the things done at instal-
lation time.

• name: required. The name of the uninstall target.

101



Appendix A

The GNU General Public
License

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation’s software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

102



For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors’ reputations.

Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and
modification follow.

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s
source code as you receive it, in any medium, provided that you

103



conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program

104



with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

105



5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients’ exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

106



8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER

107



PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate
parts of the General Public License. Of course, the commands you use may
be called something other than ‘show w’ and ‘show c’; they could even be
mouse-clicks or menu items--whatever suits your program.

108



You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Library General
Public License instead of this License.

109



Appendix B

The Commons Creative
Attribution-NonCommercial-
ShareAlike
License

A friendly summary of the license terms is available at http://creativecommons.
org/licenses/by-nc-sa/1.0/. The following are the full legal terms which
govern this documentation.

Creative Commons

Creative Commons Legal Code

Attribution-NonCommercial-ShareAlike 1.0
CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE
LEGAL SERVICES. DISTRIBUTION OF THIS DRAFT LICENSE DOES NOT CREATE AN
ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS
INFORMATION ON AN "AS-IS" BASIS. CREATIVE COMMONS MAKES NO WARRANTIES
REGARDING THE INFORMATION PROVIDED, AND DISCLAIMS LIABILITY FOR
DAMAGES RESULTING FROM ITS USE.

License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS
CREATIVE COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS
PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE
WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND
AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. THE LICENSOR GRANTS
YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF

110

http://creativecommons.org/licenses/by-nc-sa/1.0/
http://creativecommons.org/licenses/by-nc-sa/1.0/
http://creativecommons.org/licenses/by-nc-sa/1.0/


SUCH TERMS AND CONDITIONS.

1. Definitions
a. "Collective Work" means a work, such as a periodical issue,

anthology or encyclopedia, in which the Work in its entirety in
unmodified form, along with a number of other contributions,
constituting separate and independent works in themselves, are
assembled into a collective whole. A work that constitutes a
Collective Work will not be considered a Derivative Work (as
defined below) for the purposes of this License.

b. "Derivative Work" means a work based upon the Work or upon the
Work and other pre-existing works, such as a translation, musical
arrangement, dramatization, fictionalization, motion picture
version, sound recording, art reproduction, abridgment,
condensation, or any other form in which the Work may be recast,
transformed, or adapted, except that a work that constitutes a
Collective Work will not be considered a Derivative Work for the
purpose of this License.

c. "Licensor" means the individual or entity that offers the Work
under the terms of this License.

d. "Original Author" means the individual or entity who created the
Work.

e. "Work" means the copyrightable work of authorship offered under
the terms of this License.

f. "You" means an individual or entity exercising rights under this
License who has not previously violated the terms of this License
with respect to the Work, or who has received express permission
from the Licensor to exercise rights under this License despite a
previous violation.

2. Fair Use Rights. Nothing in this license is intended to reduce,
limit, or restrict any rights arising from fair use, first sale or
other limitations on the exclusive rights of the copyright owner under
copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License,
Licensor hereby grants You a worldwide, royalty-free, non-exclusive,
perpetual (for the duration of the applicable copyright) license to
exercise the rights in the Work as stated below:
a. to reproduce the Work, to incorporate the Work into one or more

Collective Works, and to reproduce the Work as incorporated in the
Collective Works;

b. to create and reproduce Derivative Works;
c. to distribute copies or phonorecords of, display publicly, perform

publicly, and perform publicly by means of a digital audio
transmission the Work including as incorporated in Collective
Works;

d. to distribute copies or phonorecords of, display publicly, perform
publicly, and perform publicly by means of a digital audio

111



transmission Derivative Works;

The above rights may be exercised in all media and formats whether now
known or hereafter devised. The above rights include the right to make
such modifications as are technically necessary to exercise the rights
in other media and formats. All rights not expressly granted by
Licensor are hereby reserved.

4. Restrictions. The license granted in Section 3 above is expressly
made subject to and limited by the following restrictions:
a. You may distribute, publicly display, publicly perform, or

publicly digitally perform the Work only under the terms of this
License, and You must include a copy of, or the Uniform Resource
Identifier for, this License with every copy or phonorecord of the
Work You distribute, publicly display, publicly perform, or
publicly digitally perform. You may not offer or impose any terms
on the Work that alter or restrict the terms of this License or
the recipients’ exercise of the rights granted hereunder. You may
not sublicense the Work. You must keep intact all notices that
refer to this License and to the disclaimer of warranties. You may
not distribute, publicly display, publicly perform, or publicly
digitally perform the Work with any technological measures that
control access or use of the Work in a manner inconsistent with
the terms of this License Agreement. The above applies to the Work
as incorporated in a Collective Work, but this does not require
the Collective Work apart from the Work itself to be made subject
to the terms of this License. If You create a Collective Work,
upon notice from any Licensor You must, to the extent practicable,
remove from the Collective Work any reference to such Licensor or
the Original Author, as requested. If You create a Derivative
Work, upon notice from any Licensor You must, to the extent
practicable, remove from the Derivative Work any reference to such
Licensor or the Original Author, as requested.

b. You may distribute, publicly display, publicly perform, or
publicly digitally perform a Derivative Work only under the terms
of this License, and You must include a copy of, or the Uniform
Resource Identifier for, this License with every copy or
phonorecord of each Derivative Work You distribute, publicly
display, publicly perform, or publicly digitally perform. You may
not offer or impose any terms on the Derivative Works that alter
or restrict the terms of this License or the recipients’ exercise
of the rights granted hereunder, and You must keep intact all
notices that refer to this License and to the disclaimer of
warranties. You may not distribute, publicly display, publicly
perform, or publicly digitally perform the Derivative Work with
any technological measures that control access or use of the Work
in a manner inconsistent with the terms of this License Agreement.
The above applies to the Derivative Work as incorporated in a
Collective Work, but this does not require the Collective Work

112



apart from the Derivative Work itself to be made subject to the
terms of this License.

c. You may not exercise any of the rights granted to You in Section 3
above in any manner that is primarily intended for or directed
toward commercial advantage or private monetary compensation. The
exchange of the Work for other copyrighted works by means of
digital file-sharing or otherwise shall not be considered to be
intended for or directed toward commercial advantage or private
monetary compensation, provided there is no payment of any
monetary compensation in connection with the exchange of
copyrighted works.

d. If you distribute, publicly display, publicly perform, or publicly
digitally perform the Work or any Derivative Works or Collective
Works, You must keep intact all copyright notices for the Work and
give the Original Author credit reasonable to the medium or means
You are utilizing by conveying the name (or pseudonym if
applicable) of the Original Author if supplied; the title of the
Work if supplied; in the case of a Derivative Work, a credit
identifying the use of the Work in the Derivative Work (e.g.,
"French translation of the Work by Original Author," or
"Screenplay based on original Work by Original Author"). Such
credit may be implemented in any reasonable manner; provided,
however, that in the case of a Derivative Work or Collective Work,
at a minimum such credit will appear where any other comparable
authorship credit appears and in a manner at least as prominent as
such other comparable authorship credit.

5. Representations, Warranties and Disclaimer
a. By offering the Work for public release under this License,

Licensor represents and warrants that, to the best of Licensor’s
knowledge after reasonable inquiry:
i. Licensor has secured all rights in the Work necessary to

grant the license rights hereunder and to permit the lawful
exercise of the rights granted hereunder without You having
any obligation to pay any royalties, compulsory license fees,
residuals or any other payments;

ii. The Work does not infringe the copyright, trademark,
publicity rights, common law rights or any other right of any
third party or constitute defamation, invasion of privacy or
other tortious injury to any third party.

b. EXCEPT AS EXPRESSLY STATED IN THIS LICENSE OR OTHERWISE AGREED IN
WRITING OR REQUIRED BY APPLICABLE LAW, THE WORK IS LICENSED ON AN
"AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, EITHER EXPRESS OR
IMPLIED INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES REGARDING
THE CONTENTS OR ACCURACY OF THE WORK.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY
APPLICABLE LAW, AND EXCEPT FOR DAMAGES ARISING FROM LIABILITY TO A
THIRD PARTY RESULTING FROM BREACH OF THE WARRANTIES IN SECTION 5, IN

113



NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY
SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES
ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. Termination
a. This License and the rights granted hereunder will terminate

automatically upon any breach by You of the terms of this License.
Individuals or entities who have received Derivative Works or
Collective Works from You under this License, however, will not
have their licenses terminated provided such individuals or
entities remain in full compliance with those licenses. Sections
1, 2, 5, 6, 7, and 8 will survive any termination of this License.

b. Subject to the above terms and conditions, the license granted
here is perpetual (for the duration of the applicable copyright in
the Work). Notwithstanding the above, Licensor reserves the right
to release the Work under different license terms or to stop
distributing the Work at any time; provided, however that any such
election will not serve to withdraw this License (or any other
license that has been, or is required to be, granted under the
terms of this License), and this License will continue in full
force and effect unless terminated as stated above.

8. Miscellaneous
a. Each time You distribute or publicly digitally perform the Work or

a Collective Work, the Licensor offers to the recipient a license
to the Work on the same terms and conditions as the license
granted to You under this License.

b. Each time You distribute or publicly digitally perform a
Derivative Work, Licensor offers to the recipient a license to the
original Work on the same terms and conditions as the license
granted to You under this License.

c. If any provision of this License is invalid or unenforceable under
applicable law, it shall not affect the validity or enforceability
of the remainder of the terms of this License, and without further
action by the parties to this agreement, such provision shall be
reformed to the minimum extent necessary to make such provision
valid and enforceable.

d. No term or provision of this License shall be deemed waived and no
breach consented to unless such waiver or consent shall be in
writing and signed by the party to be charged with such waiver or
consent.

e. This License constitutes the entire agreement between the parties
with respect to the Work licensed here. There are no
understandings, agreements or representations with respect to the
Work not specified here. Licensor shall not be bound by any
additional provisions that may appear in any communication from
You. This License may not be modified without the mutual written
agreement of the Licensor and You.

114



Creative Commons is not a party to this License, and makes no warranty
whatsoever in connection with the Work. Creative Commons will not be
liable to You or any party on any legal theory for any damages
whatsoever, including without limitation any general, special,
incidental or consequential damages arising in connection to this
license. Notwithstanding the foregoing two (2) sentences, if Creative
Commons has expressly identified itself as the Licensor hereunder, it
shall have all rights and obligations of Licensor.

Except for the limited purpose of indicating to the public that the
Work is licensed under the CCPL, neither party will use the trademark
"Creative Commons" or any related trademark or logo of Creative
Commons without the prior written consent of Creative Commons. Any
permitted use will be in compliance with Creative Commons’
then-current trademark usage guidelines, as may be published on its
website or otherwise made available upon request from time to time.

Creative Commons may be contacted at http://creativecommons.org/.

115


	Getting started
	Overview
	First Compilation
	The IzPack Architecture
	The Compilation System
	How an Installer Works
	The Different Kinds of Installers
	Installers for older VM Versions


	Writing Installation XML Files
	What You Need
	Your editor
	Writing XML

	Variable Substitution
	The Built-In Variables
	Environment Variables
	Parse Types

	The IzPack Elements
	The Root Element <installation>
	The Information Element <info>
	The Variables Element <variables>
	The GUI Preferences Element <guiprefs>
	The Localization Element <locale>
	The Resources Element <resources>
	The Panels Element <panels>
	The Packs Element <packs>
	Internationalization of the PacksPanel
	<description> - pack description
	<depends> - pack dependencies
	<os> - OS restrictions
	<updatecheck>
	<file> - add files or directories
	<additionaldata>

	<singlefile> - add a single file
	<fileset>: add a fileset
	<parsable> - parse a file after installation
	<executable> - mark file executable or execute it
	<os> - make a file OS-dependent

	The Native Element <native>
	<os> - make a library OS-dependent

	The Jar Merging Element <jar>

	The Available Panels
	HelloPanel
	InfoPanel and HTMLInfoPanel
	LicencePanel and HTMLLicencePanel
	PacksPanel
	ImgPacksPanel
	TargetPanel
	InstallPanel
	XInfoPanel
	FinishPanel
	SimpleFinishPanel
	ShortcutPanel
	UserInputPanel
	CompilePanel
	ProcessPanel
	JDKPathPanel


	Advanced Features
	Ant Integration
	System properties as variable
	Automated Installers
	Picture on the Language Selection Dialog
	Picture in the installer
	Web Installers
	More Internationalization
	Special resources
	Packs


	Desktop Shortcuts
	Defining Shortcuts
	Introduction
	What to Add to the Installer
	Why Native Code to do the Job on Windows?
	The Shortcut Specification
	Shortcut Attributes
	Unix specific shortcut attributes 

	Selective Creation of Shortcuts
	Summary

	Shortcut Tips
	The Desktop
	Icons
	Targets
	Command Line

	Trouble Shooting
	Problems You Can Solve
	Problems That Have No Solution (yet)
	A sample shortcut specification file for Unix


	Creating Your Own Panels
	How It Works
	What You Need
	What You Have To Do

	The IzPanel Class
	UML Diagram
	Description


	User Input
	The Basic XML Structure
	Concepts and XML Elements Common to All Fields
	Internationalization
	Panel Title
	Static Text
	Visual Separation
	Text Input
	Radio Buttons
	Combo Box
	Check Box
	Rule Input
	Layout and Input Rules
	Setting Field Content
	The Output Format
	Validating the Field Content
	NotEmptyValidator
	RegularExpressionValidator
	Creation Your Own Custom Validator

	Processing the Field Content
	Summary Example

	Search
	Specification
	Example


	Custom Actions
	Overview
	How It Works
	Custom Action Types
	Custom Actions At Packaging
	UML Diagram
	Description

	Custom Actions At Installing Time
	UML Diagram
	Description

	Custom Actions At Uninstalling Time
	UML Diagram
	Description


	Package Path
	Correlated Stuff
	Native Libraries for Uninstallation


	What You Have To Do
	Custom Actions at Packaging (CompilerListener)
	Custom Actions at Installation Time (InstallerListener)
	Custom Actions at Uninstallation Time (UninstallerListener)

	Example
	Ant Actions (InstallerListener and UninstallerListener)
	The Basic XML Struture
	<property>: define a property
	<propertyfile>: define properties in a file
	<target>: target to call at installation
	<uninstall_target>: target to call on uninstallation



	The GNU General Public License
	The Commons Creative Attribution-NonCommercial-ShareAlike License

