
OSG Virtual Planets 2.2.X - User Guide

2

Info: http://www.osor.eu/projects/osgvp

Author: Rafael Gaitán - rgaitan@ai2.upv.es

Author: Jordi Torres - jtorres@ai2.upv.es

Author: Marı́a Ten - mten@ai2.upv.es

Author: Jesús Zarzoso - jzarzoso@ai2.upv.es

Date: 2010-05-27, 08:40

Revision: 2

Description: This document is for application developers who want to
include the osgVP funcionality in their GIS software and as
well too for those who want to contribute to the extension
of the functionality of this toolkit.

http://www.osor.eu/projects/osgvp

Table of Contents

Introduction 7

System Requirements . 9

Building libraries 11

Prerequisites . 11

Environment variables . 13

Compile sources . 14

Import projects with Eclipse . 16

Run the examples . 18

Troubleshooting and FAQ . 20

Download SDK 21

Installation 25

Getting Started 29

Creating a example step by step on Eclipse . 29

OSGVP Viewer 35

Overview . 35

3

4 TABLE OF CONTENTS

Creating a Viewer . 35

Camera manipulators . 36

Display settings . 37

MultiSampling . 37

Stereo Settings . 38

Intersections . 38

Printing utilities . 39

OSGVP Core 41

Osg features . 41

Managing the scene-graph . 41

Mathematic Tools . 42

Positioning a Node . 43

Geodes, Drawables & Primitives . 43

Geometry creation . 44

Using LODs . 45

StateSets . 46

Textures and Materials . 47

Loading images . 48

Updating a Node . 50

GLSL Programming . 50

Loading and saving scenes . 52

Lighting . 53

Adding Text . 53

Text3D . 53

Text . 54

FadeText . 54

TABLE OF CONTENTS 5

Utilities . 55

Tessellator . 55

Optimizer . 56

Camera HUD . 56

Normals . 56

OSGExtruder . 57

OSGVP Terrain 59

The Terrain View . 59

Create a terrain viewer . 59

Set the scene data in a terrain viewer . 61

Using camera manipulators . 62

Define a terrain . 63

Layer management . 66

Adding a layer manager . 67

Adding layers . 67

Creating data drivers . 68

Removing layers . 70

Reorder layers . 70

Get a layer . 70

Forcing to retrieve data . 71

Changing layer properties . 71

Terrain utilities . 72

OSGVP Features 75

Overview . 75

Points . 76

Polylines . 78

6 TABLE OF CONTENTS

Polygons . 82

Text . 83

Extruded Geometries . 84

Particles . 88

OSGVP Manipulator 89

The Manipulator node . 89

Types of dragger . 89

Adding a Node . 90

Other available methods . 90

Setting the Manipulator Handler . 91

Manipulate an object . 92

Managing the Scene with EditionManager . 93

Methods implemented by Edition Manager . 94

Implementing the picking functionality . 95

The GeometryManipulator node . 97

OSGVP Symbology 99

The symbol visitor . 99

Basic symbols . 99

Composite symbols . 100

Extruded symbols . 102

Node symbols . 103

Introduction

Welcome to the OSG Virtual Planets (osgVP) 2.2.0 Users Guide. This manual serves as
a reference to the osgVP library, and collecting documentation and examples provided
with the code.

As you probably know, any software application requires some effort to learn. We
have done our best to minimize the learning curve while making the process as enjoy-
able as possible. This document is a short programming guide that covers the basic
and essential elements of the osgVP API.

In this section, you will be able to see the main structure of osgVP library and a
brief introduction of supported features and architectural goals.

The osgVP is a set of libraries built specially for GIS development. As you can
see in the image shown in Figure 1, it runs over OpenSceneGraph, an OpenSource
cross-platform graphics toolkit for the development of high-performance graphics ap-
plications. Communication between layers is done through JNI. The classes belongs
to this library are implemented by native calls (from Java to C++).

7

8 TABLE OF CONTENTS

Figure 1: Architecture of the osgVP library.

The osgVP could be interpreted as an abstraction layer between JAVA-GIS applica-
tions and the render system. So, osgVP API is offered in JAVA. The following libraries
were implemented.

• osgVP-core: involves necessary elements for building and optimize the scene
graph. Also includes Mathematic tools to handle vectorial data.

• osgVP-features: serves to draw simple geometric figures such as text, points,
lines, polygons, simple and extruded figures.

• osgVP-geometries: provides the necessary classes to describe the geometry of
2D and 3D features in a SIG.

• osgVP-manipulator: manages the edition of transformations associated to 3D
objects. The library also manages modifications over Geometries.

• osgVP-planets: this library is deprecated, from now on osgVP-terrain will be
used to create planets or terrain surfaces.

• osgVP-symbology: provides a mechanism to represent GIS features like points,
lines and polygons with 3D symbols.

TABLE OF CONTENTS 9

• osgVP-terrain: allows developers to create Terrain specific scene graphs and
manages geometry generation and memory paging. Also controls texture and
elevation layer.

• osgVP-viewer: with this library users are able to create a scenegraph OSG viewer
inside Java application, using JPanel or a integrated Canvas. Jogl is used in this
library just to start a render context. There are several classes to take control over
the Camera or Intersections.

System Requirements

-Minimum system requirements: Pentium IV / 512 MB RAM / Graphics card OpenGL
1.5 compatible.

-Recommended: Pentium IV / 1 GB RAM / Graphics card OpenGL 2.0 compatible.

-Operative Systems: Windows (7, Vista, XP), Linux and Mac OS X.

Notes:

1. In the case Linux OS is used, the libc library installed should be
version 2.4 or higher. Lower versions (for instance, in Ubuntu
Dapper) will cause problems.

2. Tested in Windows (7, Vista and XP), Ubuntu Linux (9.10 and
8.10 release) and Mac OS X (on Mac Intel with Leopard and Snow
Leopard).

10 TABLE OF CONTENTS

Building libraries

Throughout this section, we show you how to download and build osgVP libraries
step-by-step from sources. First, we establish the requisites for begin to build the
libraries and you learn how to import Eclipse projects of our libraries. Finally we run
some examples.

AS well as source code, we provide to developers a pre-built libraries of osgVP
for most common operating systems. Therefore, you can skip this section and go to
Download SDK if only you need to include the pre-built libraries in your own projects.

Prerequisites

Before compile osgVP libraries, you need to install some development tools.

• SVN Client: we recommend you to use the Tortoise SVN Client for Windows.
It is available at: http://tortoisesvn.tigris.org/. On Linux, the system provides
a SVN client, but if there is anyone you can download it using apt-get. On Ma-
cOSX, there is a SVN client available at terminal.

• Download the latest version of Java SDK available at: http://java.sun.com.
We recommend installing the latest version, but osgVP can run with JDK 5 or
higher. On MacOSX, Java JDK is integrated on Xcode SDK instead of be pro-
vided by SUN. Therefore, you need to install the developers tools available
at Apple Developers Connection site (http://developer.apple.com/mac/) or in
MacOSX DVD installer. Later, install the updates from Software Updates menu.

• Apache Ant: Usually MacOSX and some Linux systems provides Ant but you

11

http://tortoisesvn.tigris.org/
http://java.sun.com
http://developer.apple.com/mac/

12 TABLE OF CONTENTS

can download the latest version available at: http://ant.apache.org/ or using
the apt-get command on Linux systems. After download the binaries, unzip the
package and add the bin directory to your PATH environment variable.

• Apache Maven: Usually MacOSX and some Linux systems also provides Maven
but you can download the latest version available at: http://maven.apache.org/.
Then, unzip the package and add the bin directory to your PATH environment
variable. You should also make sure you are using at least version 2.0.10.

• CMake: is a utility to cross platform compilation. Under Windows and MacOSX
systems you can download the installer available at http://www.cmake.org/.
Don’t forget to check Add CMake to the system PATH during installation. On
Linux systems, download the latest version available at CMake web or using
the apt-get command. After download the binaries, unzip the package and add
the bin directory to your PATH environment variable.

• Source editor or compiler for C++: On Windows systems, we are develop-
ing and testing with Microsoft Visual Studio 2008, however if you don’t have
a license for this software, you can download the express version for free at
http://www.microsoft.com/express/Downloads/#2008-Visual-CPP. We strongly
recommend you use this version of Visual Studio to compile because we pro-
vided all the necessary dependencies. On the other hand, it is possible to use
newer versions of Visual Studio whenever do not forget to replace Visual Studio
libraries with new ones in .depman directory. This folder is generated on your
user home when Maven download or build osgVP native libraries. After mvn
clean command, this directory is removed and you need to replace Visual Studio
libraries again. Other compilers available for CMake can be used to compile os-
gVP however cannot guarantee error free compilation. On Linux and MacOSX
systems, CMake generates the necessary makefiles to compile the C++ libraries
of our project, by the way you can use any editor of source code. Xcode can be
used for MacOSX to compile and debug our libraries but you need to modify the
CMake properties to build the Xcode projects instead of the makefiles.

• Eclipse: is an excellent editor for Java development. You can use other software
but we provide pre-built Eclipse projects for our libraries. Download the latest
version of Eclipse at http://www.eclipse.org/. You also can use Eclipse to edit
and compile C++ libraries.

http://ant.apache.org/
http://maven.apache.org/
http://www.cmake.org/
http://www.microsoft.com/express/Downloads/#2008-Visual-CPP
http://www.eclipse.org/

TABLE OF CONTENTS 13

Environment variables

On Windows systems you can modify your PATH going to System Properties on your
Control Panel and clicking on Environment Variables as shown in the Figure 1. On Linux
and MacOSX, edit the .bash rc or .bash profile located at your home directory to modify
your PATH with any text editor. First, check if JAVA HOME variable is set to your
JDK directory instead of a JRE directory. If the variable doesn’t exist add to your
environment variables.

After, check if binaries directories for CMake, Ant and Maven are included on your
PATH environment variable.

Figure 2: Example of setting environment variables on Windows systems.

Then, try execute the following commands in your command prompt to verify that
the environment variables are set correctly:

14 TABLE OF CONTENTS

java -version

ant -version

mvn -version

cmake --version

Figure 3: Testing environment variables are set correctly.

If you get some errors with these commands, one or more of the environment
variables aren’t correctly added. Please check again.

Compile sources

The source code of osgVP compiles using Ant and Maven from command prompt.
However, on Windows systems you must use the Visual Studio 2008 Command Prompt
available at Start Menu � Microsoft Visual Studio 2008 � Visual Studio Tools. This com-
mand prompt set all necessary variables to compile with Visual Studio. On Linux or
MacOSX you can use any terminal.

On terminal, change directory to osgVP-2.2.0 and execute ant command as shown
in the Figure 3. This command runs the actions of build.xml; cleaning the workspace,
downloading dependencies, compiling sources and building Eclipse projects.

TABLE OF CONTENTS 15

Figure 4: Executing the command ant on Visual Studio 2008 Command Prompt.

First time you compile the osgVP libraries is recommended to use ant command
because this command make all necessary compilation steps. Next time, you can use
mvn install instead of ant to compile source. Some test could be out of date producing
errors in compilation. To skip test use the command mvn install -Dmaven.test.skip.

Figure 5: Executing the command mvn on Visual Studio 2008 Command Prompt.

There are useful commands that you can use in osgVP source directory. Notice
that ant command executes the first three commands automatically.

16 TABLE OF CONTENTS

• mvn clean: clean all previous build files. After use this command you need to
compile all again.

• mvn install -Dmaven.test.skip: compile all the source code (including native
libraries) and copy them into your local maven repository, skipping test.

• mvn eclipse:eclipse: build Eclipse projects. After run this command you only
need to import the projects with Eclipse.

• mvn eclipse:clean: clean all previous Eclipse projects.

• mvn test: run unit test.

• mvn install assembly:assembly -Dmaven.test.skip: create a binary distribu-
tion of osgVP libraries. The distribution file is available at “osgVP-2.2.0 � build
� product” directory.

Import projects with Eclipse

Open Eclipse and select osgVP-2.2.0 folder like your workspace.

Figure 6: Select workspace directory on Eclipse.

Close Welcome tab and select File � Import. Then, select General � Existing Projects
into Workspace at Import window and click Next.

TABLE OF CONTENTS 17

Figure 7: Select Existing Projects into Workspace at Import window.

Click on Browse button on Select root directory or write your path to osgVP-2.2.0
folder. Some projects must appear on Projects list. Finally, press Finish.

Figure 8: Set the path of your osgVP-2.2.0 directory.

Eclipse compile all projects automatically after import step.

18 TABLE OF CONTENTS

Run the examples

We provide a run configuration for osgVP examples. Press pull-down Run menu
and select Run Configurations. Then pull-down Java Application and select Examples
Launcher.

Figure 9: Select Run Configurations at Run menu.

The ExamplesLauncher is ready for use but you need to set the path of the osgVP
native libraries before. Select Environment tab and edit the PATH variable on Windows,
LD LIBRARY PATH on Linux or DYLD LIBRARY PATH on MacOSX. You must set the
value of these variables to your .depman directory:

System Variable Value

Windows XP PATH c:\Document and Settings\
{username}\.depman\bin1

Windows
Vista or 7

PATH c:\Users\{username}\ .depman\bin1

Linux LD LIBRARY PATH /home/{username}/.depman/lib

MacOSX DYLD LIBRARY PATH /Users/{username}/.depman/lib

TABLE OF CONTENTS 19

Figure 10: Editing PATH variable on Windows 7.

Finally press Run and the examples window is showed. Now, you can test osgVP
examples.

Figure 11: Running Basic Viewer Example.

1Notice that “\” character is a special character on Windows and you must set “\ \” to escape it.

20 TABLE OF CONTENTS

Troubleshooting and FAQ

• I have other JDK installed in the system like Eclipse JDK. Do I need to install
the SUN JDK? Yes, you have to install SUN Java JDK in your system and set the
JAVA HOME environment variable to this JDK.

• I get some errors during compilation process when I run mvn install -Dmaven.test.skip
or ant command. Try to clean your workspace with mvn clean command. Check
if you set all the environment variables and compile again. If you have other ver-
sion of OpenSceneGraph libraries installed in your system, remove them from
any environment variable before compile osgVP.

• I try to run mvn test command and I get errors in JUnit test. Don’t worry, some
test are out of date or need a special environment to be executed(don’t work
from command prompt).

• When I import osgVP projects into Eclipse, there are only build and osgVP-
Release@target-cmake in the projects list. You have to compile and build osgVP
projects before import them with Eclipse. Open the Visual Studio 2008 Com-
mand Prompt and run mvn eclipse:eclipse.

• The osgVP Eclipse projects have some errors. If you have the Build Automat-
ically feature disabled on Eclipse, you need to build all projects with Projects ¿
Build All.

• I launch the examples and get this error: Unable to locate win32/bin/jniosgvpviewer.dll
in class path or similar. Your PATH environment variable is not set correctly.
Follow the instructions of 6. Run examples and check the PATH.

• I do some modifications in the osgVP source code, how can i build it again?
Use mvn install -Dmaven.test.skip command.

Download SDK

We provide to developers a pre-built libraries of osgVP for most common operating
systems that you can use instead of compiling your own libraries. You can download
this SDK from Files section at http://forge.osor.eu/projects/osgvp/. Each package
contains native libraries whose format depends on your Operative System (.so for
Linux, .dll for Windows and .dylib for MacOSX) and necessary jar files to compile and
run your osgVP projects and compiled examples framework.

The SDK package contains:

• binaries directory: Native examples, binaries and pre-compiled dependencies
per platform.

• lib directory: Jar files.

• examples script: Script to run the examples.

Resources required for carrying out osgvp projects:

• Jar files:

– gluegen-rt-1.1.0.jar

– idw-1.5.0.jar

– jogl-1.1.0.jar

– libNative-2.2.x.jar

– libosgvp-core-2.2.x.jar

– libosgvp-ephemeris-2.2.x.jar

– libosgvp-examples-2.2.x.jar

21

http://forge.osor.eu/projects/osgvp/

22 TABLE OF CONTENTS

– libosgvp-features-2.2.x.jar

– libosgvp-geometries-2.2.x.jar

– libosgvp-manipulator-2.2.x.jar

– libosgvp-planets-2.2.x.jar

– libosgvp-stereoconfig-2.2.x.jar

– libosgvp-symbology-2.2.x.jar

– libosgvp-terrain-2.2.x.jar

– libosgvp-viewer-2.x.x.jar

• Native libraries:

– jniosgvpcore.*

– jniosgvpfeatures.*

– jniosgvpmanipulator.*

– jniosgvpplanets.*

– jniosgvpstereoconfig.*

– jniosgvpterrain.*

– jniosgvpviewer.*

– osgvpcore.*

– osgvpfeatures.*

– osgvpmanipulator.*

– osgvpplanets.*

– osgvpstereoconfig.*

– osgvpterrain.*

– osgvpviewer.*

• Native dependencies:

– osg 2.8.2 libraries and plugins

– gluegen-rt.*

– jogl*.*

• Win 32 additional native dependencies:

– Microsoft.VC90.CRT.manifest

– gdal16.dll

– glut32.dll

– liblua.dll

TABLE OF CONTENTS 23

– libpng13.dll

– msvc?90.dll

– zlib1.dll

• Mac OS additional native dependencies:

– libfreetype.6.dylib

Once the osgVP SDK is downloaded the next step is to run the examples script
located in root directory of the SDK package. If your OS is Windows you shall execute
run-Examples.bat, in case you are running on Linux or on MacOSX you must execute
run-Examples.sh.

All binaries and precompiled dependencies are placed inside binaries directory
and the script exports the PATH to this directory, so you should view the examples
framework and you will be able to execute any example in the framework.

If all is ok and previous process is correct, the image shown in the next Figure
should be similar to your examples execution.

Figure 12: Examples framework. Running basicViewer Example in wired mode.

24 TABLE OF CONTENTS

Installation

If you compile the osgVP SDK using ant or mvn install, the builded files are located in
.depman directory at your home. The dependencies are included in this directory too.
By the way, these files are located at target directory in each project folder too.

Once you have downloaded the libraries or compile them from source code, there
are several forms to include them into your project, depending how you are develop-
ing.

If your are developing with Eclipse, maybe the easy-way is creating a lib directory
inside your project and include all the jar files into this directory, also create a binaries
directory and add native libraries into this directory. Then add lib directory to the
java build path, and to execute is necessary to add the correct environment variables
(see Getting Started section).

If you want to use our library in your project you can get java binaries using
Maven, it’s necessary to add this dependencies section in your pom.xml.

<dependencies>

<dependency>

<groupId>org.gvsig.osgvp.libosgvp</groupId>

<artifactId>libosgvp-core</artifactId>

<version>2.2.0</version>

</dependency>

<dependency>

<groupId>org.gvsig.osgvp.libosgvp</groupId>

<artifactId>libosgvp-features</artifactId>

<version>2.2.0</version>

25

26 TABLE OF CONTENTS

</dependency>

<dependency>

<groupId>org.gvsig.osgvp.libosgvp</groupId>

<artifactId>libosgvp-geometries</artifactId>

<version>2.2.0</version>

</dependency>

<dependency>

<groupId>org.gvsig.osgvp.libosgvp</groupId>

<artifactId>libosgvp-manipulator</artifactId>

<version>2.2.0</version>

</dependency>

<dependency>

<groupId>org.gvsig.osgvp.libosgvp</groupId>

<artifactId>libosgvp-stereoconfig</artifactId>

<version>2.2.0</version>

</dependency>

<dependency>

<groupId>org.gvsig.osgvp.libosgvp</groupId>

<artifactId>libosgvp-symbology</artifactId>

<version>2.2.0</version>

</dependency>

<dependency>

<groupId>org.gvsig.osgvp.libosgvp</groupId>

<artifactId>libosgvp-terrain</artifactId>

<version>2.2.0</version>

</dependency>

<dependency>

<groupId>org.gvsig.osgvp.libosgvp</groupId>

<artifactId>libosgvp-viewer</artifactId>

<version>2.2.</version>

</dependency>

</dependencies>

Also need to add a new remote repository in your pom.xml. Notice the snap-
shotRepository tag offers a snapshot version compiled from osgVP developers with
latest changes and modifications, but this version is not final or official release.

<repositories>

TABLE OF CONTENTS 27

...

<repository>

<id>osgvp-repository</id>

<name>osgVP maven repository</name>

<url>scp://shell.forge.osor.eu/home/groups/

osgvp/www/maven-repository/</url>

</repository>

<snapshotRepository>

<id>osgvp-repository</id>

<name>osgVP maven repository</name>

<url>scp://shell.forge.osor.eu/home/groups/

osgvp/www/maven-repository/</url>

</snapshotRepository>

</repositories>

28 TABLE OF CONTENTS

Getting Started

The osgVP has an ever growing number of examples available for developers to learn
from. Following is a guide to getting these examples running. Don not forget to visit
the section Installation before trying to run some examples.

Creating a example step by step on Eclipse

1. Create a new Eclipse project containing a Java file with this simple example
code:

package org.examples.Main;

import java.awt.BorderLayout;

import java.awt.Component;

import java.awt.event.WindowAdapter;

import java.awt.event.WindowEvent;

import javax.swing.JFrame;

import javax.swing.JPanel;

import org.gvsig.osgvp.core.osg.PositionAttitudeTransform;

import org.gvsig.osgvp.core.osg.Vec3;

import org.gvsig.osgvp.core.osgdb.osgDB;

import org.gvsig.osgvp.exceptions.node.NodeException;

import org.gvsig.osgvp.features.Text;

import org.gvsig.osgvp.terrain.Terrain;

29

30 TABLE OF CONTENTS

import org.gvsig.osgvp.terrain.TerrainCameraManipulator;

import org.gvsig.osgvp.terrain.TerrainViewer;

import org.gvsig.osgvp.terrain.CustomCameraManipulator.

MouseButtonMaskType;

import org.gvsig.osgvp.viewer.Camera;

import org.gvsig.osgvp.viewer.IViewerContainer;

import org.gvsig.osgvp.viewer.ViewerFactory;

public class Main {

private static IViewerContainer canvas3d;

public static void main(String[] args) {

JPanel jContentPane = new JPanel();

jContentPane.setLayout(new BorderLayout());

JFrame jFrame = new JFrame();

jFrame.setContentPane(jContentPane);

jFrame.setTitle("Create Terrain View Example");

jFrame.setSize(600, 400);

jFrame.setDefaultCloseOperation(

JFrame.EXIT ON CLOSE);

/**

* Create a terrain viewer

*/

TerrainViewer terrainViewer = null;

try {
terrainViewer = new TerrainViewer();

} catch (NodeException e) {
e.printStackTrace();

}

TABLE OF CONTENTS 31

/**

* Define the viewer type and add to the canvas

*/

canvas3d = ViewerFactory.getInstance().

createViewer(ViewerFactory.

VIEWER TYPE.CANVAS VIEWER, terrainViewer);

jContentPane.add((Component) canvas3d,

BorderLayout.CENTER);

ViewerFactory.getInstance().startAnimator();

/**

* Add a planet to the scene data

*/

Terrain earth = null;

try {
earth = new Terrain();

terrainViewer.addTerrain(earth);

} catch (NodeException e2) {
e2.printStackTrace();

}

/**

* Put the camera in the scene

*/

Camera cam = new Camera();

cam.setViewByLookAt(earth.getRadiusEquatorial()

* 5.0, 0, 0, 0, 0, 0, 0, 0, 1);

terrainViewer.setCamera(cam);

/**

* Add a cow in the north pole

*/

double factor = earth.getRadiusEquatorial()

/ 20.0;

try {
PositionAttitudeTransform transform =

32 TABLE OF CONTENTS

new PositionAttitudeTransform();

transform.addChild(osgDB.

readNodeFileFromResources(

"/cow.ive"));

transform.setScale(new Vec3(factor,

factor, factor));

transform.setPosition(new Vec3(0, 0,

earth.getRadiusPolar() * 1.1));

terrainViewer.addFeature(transform);

} catch (NodeException e1) {
e1.printStackTrace();

}

/**

* Adding some information in the HUD

*/

try {
Text info = new Text();

info.setText("Terrain View Example");

terrainViewer.addNodeToCameraHUD(info);

} catch (NodeException e1) {
e1.printStackTrace();

}

/**

* Customizing the manipulator

*/

TerrainCameraManipulator manip =

(TerrainCameraManipulator) terrainViewer

.getCameraManipulator();

manip.registryActionMask("AZIMUT",

MouseButtonMaskType.LEFT MOUSE BUTTON,

’a’);

manip.setMinimumDistance(

(float)earth.getRadiusEquatorial());

manip.setMaximumDistance(

TABLE OF CONTENTS 33

(float)earth.getRadiusEquatorial()

* 5.0f);

manip.setEnabledNorthOrientation(true);

jFrame.setVisible(true);

jFrame.addWindowListener(new WindowAdapter() {
public void windowClosing(WindowEvent e) {

ViewerFactory.getInstance()

.stopAnimator();

canvas3d.dispose();

}
});

}

}

2. Configure Java Build Path of the project. Right click on your project and se-
lect Properties on contextual menu. Then select Java Build Path and click the
Add External JARs button on the tab Libraries. Finally, select the lib directory
of the osgVP SDK which contain the jar files.

Figure 13: Adding osgVP external jars into your projects.

34 TABLE OF CONTENTS

3. Configure the Launcher. Open Run Configurations dialog on Run menu and
create a new Java Application with this configuration:

• Name: SimpleExample

• Main Tab:

– Project: simple-example

– Main Class: org.example.Main

• Environment Tab:

– Linux:

LD LIBRARY PATH=${workspace loc}/binaries/linux32
– Windows:

PATH=${workspace loc}\\binaries\\win32
– MacOSX:

DYLD LIBRARY PATH=${workspace loc}/binaries/mac

4. Run the new launcher, if all is ok, then you should see the image shown in
the next Figure.

Figure 14: Simple example

OSGVP Viewer

In the following lines you might find the way to create a viewer and to be able to
render your scenegraph from different views. Doing high resolution printing, mak-
ing your viewer stereo or getting your scene multisampled are some of the features
explained in this section.

Overview

A difficulty users have with OpenSceneGraph is complexity of building, with the
number of external dependencies being a barrier to entry. Also when learning the
API having multiple API’s to learn adds to steepness of the learning curve - if we can
provide a native viewer library all using the same matrix, memory management, and
coding style and design then hopefully it’ll become easier to learn.

With this library you are able to create different types of Viewer, including Com-
positeViewers and Offscreen Viewers. Offscreen Viewers are useful in the print proc-
cess. They are implemented with pbuffers. Composite Viewers are util when we need
different views of the same scene.

Creating a Viewer

First of all, you must create a new IViewerContainer variable to access the canvas and
viewer properties.

private static IViewerContainer canvas3d;

35

36 TABLE OF CONTENTS

Later the OSGViewer instance can be created and assigned to the canvas. The first
parameter of the createViewer method specifies the viewer type. A viewer can be a
CANVAS VIEWER or a JPANEL VIEWER type. In the second parameter of the method
you have to assign the recently created planet viewer. A planet viewer can be added
into a JPanel and integrated in your application.

JPanel jContentPane = new JPanel();

jContentPane.setLayout(new BorderLayout());

OSGViewer Viewer = new OSGViewer();

canvas3d = ViewerFactory.getInstance().createViewer(

ViewerFactory.VIEWER TYPE.CANVAS VIEWER,

Viewer);

jContentPane.add((Component) canvas3d, BorderLayout.CENTER);

ViewerFactory.getInstance().startAnimator();

Then we must attach a scene graph to it, and the viewer allows it to render. The
way to do that is through a method called setSceneData in OSGViewer to add nodes
into the scene graph.

Before your application finalize you must call the dispose method of the viewer and
stop the animator.

jFrame.addWindowListener(new WindowAdapter() {
public void windowClosing(WindowEvent e) {

ViewerFactory.getInstance().stopAnimator();

canvas3d.dispose();

}
});

Camera manipulators

A camera manipulator define how to move the camera in the scene.You can attach a
camera manipulator to the OSGViewer. There are different types of CameraManipula-
tors and it should be easy to implement your own CameraManipulator. Each manip-

TABLE OF CONTENTS 37

ulator modify the way that the mouse controls the camera position. The manipulators
we implemented are :

• DriveManipulator: is a camera manipulator which provides drive-
like functionality.By default, the left mouse button accelerates, the
right mouse button decelerates, and the middle mouse button (or left
and right simultaneously) stops dead.

• FlightManipulator:is a MatrixManipulator which provides flight simulator-
like updating of the camera position & orientation.By default, the left
mouse button accelerates, the right mouse button decelerates, and the
middle mouse button (or left and right simultaneously) stops dead.

• TerrainManipulator: is a camera manipulator done to move the per-
spective in a Terrain scenerio.

• TrackballManipulator: is the manipualtor created and attached to viewer
by deafult. The TrackballManipulator class receives updates of mouse
events in the form of GUIEventAdapter instances.

Display settings

This class serves, among other capabilities, to change the features of the viewer de-
pending on the display type you want to use. The different kinds of displays that you
can choose are: monitor, powerwall, reality center and head mounted display. Other
thing you can do with this entity is apply multisampling to reduce aliasing.

MultiSampling

According to the OpenGL GL ARB multisample specification, “multisampling” refers
to a specific optimization of supersampling. The specification dictates that the ren-
derer evaluate one color, stencil, etc. value per pixel, and only “truly” supersample
the depth value. (This is not the same as supersampling, but by the OpenGL 1.5 speci-
fication[2], the definition had been updated to include fully supersampling implemen-
tations as well.) In graphics literature in general, “multisampling” refers to any special
case of supersampling where some components of the final image are not fully super-
sampled. Most modern GPUs are capable of this form of antialiasing, but it greatly
taxes resources such as texture bandwidth and fillrate. Let’s see some example:

38 TABLE OF CONTENTS

//create the viewer

OSGViewer viewer= new OSGViewer();

DisplaySettings ds= new DisplaySettings();

//set multisamples

ds.setNumMultiSamples(4);

//set display settings to the viewer

viewer.setDisplaySettings(ds);

Stereo Settings

The osgVP has support for anaglyphic stereo (i.e. red/green or red/cyan glasses),
quad buffered stereo (i.e. active stereo using shutter glasses, or passive stereo using
polarized projectors & glasses) and horizontal and vertical split window stereo imple-
mentations. Almost all OSG applications have the potential for stereo support simply
by setting the relevant environmental variables, or using DisplaySettings class. Lit-
tle or no code changes will be required, the support is handled transparently inside
the sceneview handling of rendering. To acomplish stereo settings from code you can
follow next lines.

//create the viewer

OSGViewer viewer= new OSGViewer();

DisplaySettings ds= new DisplaySettings();

//enabling stereo

ds.setStereo(true);

//set the stereo preferred mode

ds.setStereoMode(DisplaySettings.StereoMode.ANAGLYPHIC);

//set display settings to the viewer

viewer.setDisplaySettings(ds);

For more information about making stereo viewing you can look at www.openscenegraph.org.

Intersections

Typically, 3D applications need to support user interaction or selection, such as pick-
ing. The osgVP-viewer library efficiently supports picking with some classes that test
the scene graph for intersection. Next piece of code demonstrates how to obtain the
intersections from a ray traced from View point.

TABLE OF CONTENTS 39

Intersections hits = getCanvas3D().getOSGViewer().rayPick(

manager, arg0.getX(), arg0.getY(),

Manipulator.NEG MANIPULATOR NODEMASK);

if (hits.containsIntersections()) {
Intersection hit = polytopeHits.getFirstIntersection();

...

}

In the same way we are able to calculate intersections inside a polytope traced from
the view point.

Intersections polytopeHits = getCanvas3D().getOSGViewer().rayPick(

manager, arg0.getX(), arg0.getY(),

Manipulator.NEG MANIPULATOR NODEMASK);

if (polytopeHits.containsIntersections()) {
Intersection hit = polytopeHits.getFirstIntersection();

...

}

Printing utilities

For High Resolution Printing we decided to take several tile images in memory and
then build a collage begining from this tile images. The way to do that is using an
OffscreenViewer.

printViewer = new OSGViewer();

printViewer.setUpViewerInBackground(0, 0, getCanvas3D().getWidth(),

getCanvas3D().getHeight());

printViewer.setSceneData(cow.osg);

The first step was create a tiled view of the scene. Then we have to take a image of
this tiles in memory.

40 TABLE OF CONTENTS

Figure 15: Tiled scene.

The class PrintUtilities makes for us this work, we can decide wich is the size in
pixels of final image. This image is converted to a BufferedImage in Java.

PrintUtilities util = new PrintUtilities();

util.setViewer(printViewer);

BufferedImage s = util.getHighResolutionImage(g, viewerCam,

5600, 2700);

As you can see, you can create big images in memory and then convert it to Java
images, following a tiling process all done in background.

OSGVP Core

The following section is dedicated to explain how the osgVP-core library works. In
particular, adding or removing nodes to the graph, positioning or updating a node,
loading and applying textures or materials, etc. The osgVP-core library also contains
mathematical tools necessaries to manage the scene-graph.

Osg features

The org.gvsig.osgvp.core.osg includes the necessary classes to create and manages
OSG scene-graph in Java applications. Most of the basic OSG features are included in
the library.

Managing the scene-graph

Adding and/or removing nodes to the scene should be easy if you know the basics of
scene-graphs. Usually the root of the scene is a Group node. This object is capable to
add or remove nodes to itself by a simple call. Following lines of code tries to illustrate
the process.

Group root = new Group();// creates the root of the scene

try {
Node dummy = new Node(); // creates a dummy node

root.addChild(dummy); //Adds node to root group

41

42 TABLE OF CONTENTS

} catch (NodeException e) {
Util.logger.severe(e.toString());

return null;

}

In the same way you can remove nodes from groups.

try {
root.removeChild(dummy);

} catch (NodeException e) {
Util.logger.severe(e.toString());

return null;

}

The rest of the public interface of Nodes and Groups are easy to manage. The name
of the methods are quite illustrative for people who have the necessary know-how of
scene-graphs. For more information you can look up in the Java-docs.

Mathematic Tools

Mathematic tools are included in this library. They are necessary to manage some
behaviours of nodes in the scene, like positioning, rotating, scaling, etc. You can do
this through Vector, Matrix or Quaternion operations. Using this entities depends on
your maths skills. The public Api of these classes is extensive and lets the user to do
almost any operation.

The defined mathematics classes are:

• Vec2, Vec3 and Vec4: Usually Vec3 are used to define vertex positions
and Vec4 to define colors. Since Java 1.5 you can use Vector¡T¿, this is
the way to create arrays of Vecs.

• Matrix: Everybody who works in CG knows the importance of matri-
ces in the view process. Matrix operations could serve for changing
the perspective or the projection of the view, etc. For more informa-
tion you can consult any manual of OpenGL.

• Quat: This entity is used to accumulate rotations. It could be used in
spherical interpolations,etc. The use of this class requires some ad-
vanced maths skills.

TABLE OF CONTENTS 43

• Ellipsoid Model: Serves to do changes between coordinate systems
using an ellipsoid model to do the operations.

Positioning a Node

Once we know how to use Maths tools it’s quite easy to implement affine transfor-
mations. It can be done using the structures PositionAttitudeTransform. Indeed this
transformations, the class Autotransform could be used to implement Billboarding or
auto-scaling to screen.

Let’s see some code:

Group root= new Group();

//create node

AutoTransform at = new AutoTransform();

at.addChild(osgDB.readNodeFileFromResources("/cow.ive"));

//affine transformations

at.setPosition(new Vec3(0, 0, -2));

at.setScale(new Vec3(0.8, 1, 0.8));

at.setRotation(90, new Vec3(0, 0, 1));

//add transform to the scene

root.addChild(at);

If we want to do billboarding we must write this line:

at.setAutoRotateMode(AutoTransform.AutoRotateMode.ROTATE TO CAMERA);

A full implementation of this example is available on “Camera Matrices Exam-
ple” of the examples framework. See the CameraMatricesExample class in examples
package of source code.

Geodes, Drawables & Primitives

A brief explanation of the following classes is helpful:

44 TABLE OF CONTENTS

-Geodes: The geode class is derived from the ’node’ class. Nodes (and thus geodes)
can be added to a scene graph as leaf nodes. Geode instances can have any number of
’drawables’ associated with them.

-Drawables: The base class ’drawable’ is a pure virtual class with six concrete de-
rived classes. (reference) The ’geometry’ class can have vertex (and vertex data) asso-
ciated with it directly, or can have any number of ’primitiveSet’ instances associated
with it. Vertex and vertex attribute data (color, normals, texture coordinates) is stored
in arrays. Since more than one vertex may share the same color, normal or texture
coordinate, and array of indexes can be used to map vertex arrays to color, normal or
texture coordinate arrays.

-PrimitiveSet: This class loosely wraps the OpenGL drawing primitives - POINTS,
LINES, LINE STRIP, LINE LOOP,... QUADS,... POLYGON.

Geometry creation

The following section of code sets up a viewer to see the scene we create, a ’group’
instance to serve as the root of the scene graph, a geometry node (geode) to collect
drawables, and a geometry instance to associate vertexes and vertex data. The follow-
ing code is from “Geometry Example” of the examples framework.

//Creation of Instances

Geometry geometry = new Geometry();

Geode g = new Geode();

// Arrays of normals vertexes and colors

Vector<Vec3> vertices = new Vector<Vec3>();

Vector<Vec4> color = new Vector<Vec4>();

Vector<Vec3> normal = new Vector<Vec3>();

//Fill in the vertex array

vertices.add(new Vec3(-1.02168, -2.15188e-09, 0.885735));

vertices.add(new Vec3(-0.976368, -2.15188e-09, 0.832179));

vertices.add(new Vec3(-0.873376, 9.18133e-09, 0.832179));

vertices.add(new Vec3(-0.836299, -2.15188e-09, 0.885735));

vertices.add(new Vec3(-0.790982, 9.18133e-09, 0.959889));

//Normal array

normal.add(new Vec3(0.0, -1.0, 0.0));

TABLE OF CONTENTS 45

//Color array

color.add(new Vec4(1.0f, 1.0f, 0.0f, 1.0f));

//Setting the arrays into geometry

geometry.setVertexArray(vertices);

geometry.setColorArray(color);

//The value in the first element of the color array

//will be used in all the vertices

geometry.setColorBinding(Geometry.AttributeBinding.BIND OVERALL);

geometry.setNormalArray(normal);

//The value in the first element of the normal array

//will be used in all the vertices

geometry.setNormalBinding(Geometry.AttributeBinding.BIND OVERALL);

try{
//We can decide the primitive to draw the geometry

geometry.addPrimitiveSet(new DrawArrays(DrawArrays.Mode.POINTS, 0,

geometry.getVertexArray().size()));

...

If you want to use textures you must define the texture coordinates array. For dig
in PrimitiveSets and Geometries you can take a look to the OpenSceneGraph website.

Using LODs

In the following code, we show how to use a LOD to change the level of detail of
the geometry of the scene-graph. In this example we use three different geometries
in different distance ranges to represent a figure. The full example is available on
“LOD Example” of the examples framework. See the LODExample class in examples
package of source code.

Group g = new Group();

try {

LOD lod = new LOD();

g.addChild(lod);

46 TABLE OF CONTENTS

lod.addChild(osgDB.readNodeFileFromResources

("/cow.ive"), 0, 1000);

lod.addChild(osgDB.readNodeFileFromResources

("/cessna.osg"), 1000, 2000);

lod.addChild(osgDB.readNodeFileFromResources

("/MachineGun.ive"), 2000, 50000);

} catch (NodeException e) {
}

StateSets

A scene graph manager traverses a scene graph to determine what geometry needs to
be sent to the graphics pipeline for rendering. During this traversal, the scene graph
manager can also collect information on how that geometry should be rendered. This
information is stored in osg::StateSet instances. StateSets contain lists of OpenGL at-
tribute/value pairs. These StateSets can be associated with nodes of the scene-graph.
During pre-render traversal, StateSets are accumulated from the root to leaf nodes.
State attributes that are not changed at a node are simply inherited from above.

A few additional features allow more control and flexibility. A state’s attribute
value can be set to OVERRIDE. This means that all the children of that node - regard-
less of what the children’s attribute value is - will inherit the parent node’s attribute
value. This OVERRIDE can be, well, over-ridden. If one of the child nodes set that
attributes value to PROTECTED, they can set this attribute value regardless of the
parent’s setting.

With StateSets you can switch the lighting mode, or activate blending, fog, texture
and material modes, etc. The normal way to do that is creating or getting the StateSet
of a node and then activate the mode you want. In the example of code below Material
mode is activated.

g = new Group();

//create the stateset

StateSet st= g.getOrCreateStateSet();

//activating Material mode

Material m = new Material();

st.setMaterial(m, Node.Mode.ON);

TABLE OF CONTENTS 47

For more information about StateSet modes you can look up in the OpenScene-
Graph website or in the Java-doc of osgVP.

Textures and Materials

As in OpenGL, you can apply textures or materials to an object in the scene. The way
to do that is activating the desired stateset mode associated to the object as explained
before. In case of materials you can define it as in OpenGL, let’s see an example:

Sphere sphere = new Sphere();

//create material

Material m = new Material();

try {
//settings

m.setDiffuse(Material.Face.FRONT, new Vec4(1.0,

(float) i / 10.0f, 0.6f, 1.0f));

m.setAmbient(Material.Face.FRONT, new Vec4(0.9f,

0.8f, 0.6f, 1.0f));

m.setSpecular(Material.Face.FRONT, new Vec4(0.9f,

0.8f, 0.6f, 1.0f));

m.setEmission(Material.Face.FRONT AND BACK,

new Vec4(1, 0, 0, 1));

m.setShininess(Material.Face.FRONT, 85);

m.setTransparency(Material.Face.FRONT, (float) i

/ 15.0f);

//apply material

sphera.getOrCreateStateSet().setMaterial(m,

Node.Mode.ON);

...

}

If you want to use textures, the object receiver of these textures must have the
TexCoord vector defined. If TexCoord vector is not defined, the texture will not be
applied correctly. To load Textures the library osgVP-core offers the classes Texture2D
and Image. The procedure to activate the corresponding stateset is very similar to the
material case.

try{

48 TABLE OF CONTENTS

Sphere sphere = new Sphere();

Texture2D tex = new Texture2D();

//activates the texture mode in stage 0

sphera.getOrCreateStateSet().setTexture2D(tex, 0,

Node.Mode.ON);

....

Once you have activated the corresponding stateset mode, now you have to load
one or several images in the texture instance.

A full implementation of this example is available on “Material Example” of the
examples framework. See the MaterialExample class in examples package of source
code.

Loading images

There are two basic ways to load images through the public interface of the class Im-
age. First way is loading images of a .jpg .bmp or whatever kind of image file sup-
ported by OpenSceneGraph. The other way is using BufferedImage of Java. The class
image is prepared to convert images from BufferedImages to osgVP images. Coding
first way should look like next lines.

Texture2D tex = new Texture2D();

try {
//We have image file in a resources folder

File texture = Util.extractFromURL(this.getClass()

.getResource("/test.jpg"));

//load the image

Image im = new Image(texture.getPath());

//setting the image in the texture instance

tex.setImage(im);

} catch (Exception e) {
}

TABLE OF CONTENTS 49

If you want to load textures using BufferedImages you can implement a similar
code like the written below.

Texture2D tex = new Texture2D();

try{

Image im = new Image();

//charging the imagefile in a BufferedImage

BufferedImage bufferim = ImageIO.read(new File(

Util.extractFromURL(this.getClass().

getResource("/planet.png")).getAbsolutePath()));

im.setBufferedImage(bufferim);

tex.setImage(im);

}

In a similar way you can convert images from osgVP to BufferedImages of Java.

try {

File texture = Util.extractFromURL(this.getClass()

.getResource("/earth.gif"));

Image im = new Image(texture.getAbsolutePath());

BufferedImage bufferim = im.getBufferedImage();

} catch (Exception e) {
}

A full implementation of this example is available on “Buffered Image Example”
and “Image Example” of the examples framework. See the BufferedImageExample
and ImageExample class in examples package of source code.

50 TABLE OF CONTENTS

Updating a Node

Updating a Node is a very usual process in CG applications. Th scene-graph gives us
the way to do it. Your main class must implement the UpdateNodeListener Interface.
Implementing this interface forces you to write the update method. Is in this method
where you have to do whatever you want with your node. You can take a look to the
example AxisExample of examples framework. Let’s see how it works.

public class AxisExample extends AbstractCoreExample

implements UpdateNodeListener {
...

//declare the axis

Axis ejes = new Axis();

//Atention!! You must set the Listener

ejes.setUpdateListener(this);

...

//Do updating stuff

public void update(Node node) {
ejes.update(getCanvas3D().getOSGViewer()

.getCamera());

}
}

A full implementation of this example is available on “Axis Example” of the ex-
amples framework. See the AxisExmaple class in examples package of source code.

GLSL Programming

OpenGL Shading Language allows programmers to write custom pixel and vertex
shaders. For more information on shading languages - including minimum hardware
and software requirements - see www.opengl.org. The classes Program and Shader
allow users to apply these shaders as part of a StateSet to selected subtrees within a
scene graph. In this manual we explain nothing about writing shaders, but we explain
how to apply these shaders to a Node of our scene-graph. Using a custom vertex or
fragment shader in osgVP involves the following basic classes:

TABLE OF CONTENTS 51

• Program - application level abstraction of the OpenGL Shading Language glPro-
gramObject. Instance of the Program class can be associated with StateSets and
enabled using the StateSet class.Enabling a program object for a stateset results
in drawables within that stateset being rendered using the Program’s shaders.

• Shader - application level abstraction of the OpenGL Shading Language glShader-
Object. This class manages loading and compiling shader source code. Instances
of the Shader class can be assigned to one or more Program instances. There are
two types of shader objects: Shader.Type.FRAGMENT and Shader.Type.VERTEX.

The steps to create an application that uses an OpenGL pixel and fragment shader
are as follows:

• Create a Program instance

• Create VERTEX and FRAGMENT instances of the Shader class

• Load and compile the shader source

• Add the shaders to the Program instance

• Associate and enable the Program instance as part of a StateSet.

The code implemented in the GLSL Program Example of examples framework,
available at ProgramExample class, looks like this:

//create the instances

Program prog= new Program();

Shader shad = new Shader();

Shader shadfrag = new Shader();

//set type of shader

shad.setType(Shader.Type.VERTEX);

shadfrag.setType(Shader.Type.FRAGMENT);

//Load and compile the shader source

File source = Util.extractFromURL(this.getClass().getResource(

"/marble.vert"));

File sourcefrag = Util.extractFromURL(this.getClass().getResource(

"/marble.frag"));

shad.loadShaderSourceFromFile(source.getPath());

shadfrag.loadShaderSourceFromFile(sourcefrag.getPath());

//adding shaders to program instance

prog.addShader(shad);

52 TABLE OF CONTENTS

prog.addShader(shadfrag);

//activate the stateset

mynode.getOrCreateStateSet().setProgram(prog, Node.Mode.ON);

Loading and saving scenes

The osgVP-core library is capable to load and save scenes or nodes in the same format
as OpenSceneGraph does it using the package org.gvsig.osgvp.core.osgdb. It includes
.osg .ive .3ds or/and any format supported in the plugins of OpenSceneGraph. The
way to load/save nodes or scenes is using osgDB class.

In the next piece of code a Node is loaded from disk, and added to the root of
scene.

public Node createScene() {
root = new Group();

try {
g.addChild(osgDB.readNodeFileFromResources("/cow.ive"));

} catch (NodeException e1) {
e1.printStackTrace();

}
return root;

}

A full implementation of this example is available on “Update Node Example” of
the examples framework. See the UpdateNodeExample class in examples package of
source code.

In the same way you should be able to persist nodes using de call

osgDB.WriteNodeFile("/cow.ive");

A full implementation of this example is available on “Save Test Example” of the
examples framework. See the SaveTestExample class in examples package of source
code.

TABLE OF CONTENTS 53

Lighting

The org.gvsig.osgvp.core.osgsim package contains the LightPoint and LightPointN-
ode classes to define light points into the scene-graph as shown in the next example.

LightPoint lp = new LightPoint();

LightPointNode lpn= new LightPointNode();

lp.setColor(new Vec4(0f,1f,1f,0.5f));

lp.setPosition(new Vec3(0f,0f,0f));

lp.setRadius(200);

lpn.addLightPoint(lp);

A full implementation of this example is available on “LightPoint Example” of
the examples framework. See the LightPointExample class in exampless package of
source code.

Adding Text

This org.gvsig.osgvp.core.osgtext package has the necessary classes to rendering text.
The text base class has the necessary parameters to define a text into a scene-graph. A
text can be rendered like a 2D text, using Text class, or like a 3D text, using Text3D.
Both classes inherit their methods from TextBase class. The FadeText class is an exten-
sion of Text class which includes fade in and fade out functionality.

Text3D

To add a 3D Text into the scene-graph you can follow the next example:

Geode geode = new Geode();

Text3D t3d = new Text3D();

t3d.setFont("fonts/dirtydoz.ttf");

t3d.setText("3D Text");

54 TABLE OF CONTENTS

t3d.setCharacterSize(0.5f);

t3d.setCharacterDepth(1.5f);

t3d.setPosition(new Vec3(50 + (i * 5), j * 5, k * 5));

t3d.setDrawMode(TextBase.DrawModeMask.TEXT);

t3d.setAlignment(TextBase.AxisAlignment.SCREEN);

t3d.setRenderMode(Text3D.RenderMode.PER GLYPH);

geode.addDrawable(t3d);

Text

The example shows how to draw a 2D text:

Geode geode = new Geode();

Text t = new Text();

t.setFont("fonts/arial.ttf");

t.setText("2D Text");

t.setAutoRotateToScreen(true);

t.setCharacterSize(1);

t.setPosition(new Vec3(25 + (i * 5), j * 5, k * 5));

t.setColor(new Vec4(1f, 0f, 0f, 1f));

geode.addDrawable(t);

FadeText

You can use FadeText instead of normal Text in your scene-graph like next example:

Geode geode = new Geode();

FadeText ft = new FadeText();

ft.setFont("fonts/arial.ttf");

ft.setText("Fade Text");

ft.setAutoRotateToScreen(true);

ft.setCharacterSize(1);

ft.setPosition(new Vec3(25 + (i * 5), j * 5, k * 5));

TABLE OF CONTENTS 55

ft.setColor(new Vec4(1f, 0f, 0f, 1f));

geode.addDrawable(ft);

A full implementation of this example is available on “Text Example” of the exam-
ples framework. See the TextExample class in exampless package of source code.

Utilities

This org.gvsig.osgvp.core.osgutil package contains some helpful classes imported from
OSG to improve the rendering efficiency like tessellator and optimizer. Other utilities
are available at org.gvsig.osgvp.core.util pacakge. This package includes some help-
ful classes like ActionCommand, EventHandler or UpdateNodeListener used along
the osgVP libraries to implement some functionality. The NativeDeps class which
load the native libraries of osgVP its also included in this package. Finally we include
a camera HUD, a geometry extruder and show normals utilities too.

Tessellator

The tesellator technique included in osgVP can divide a polygon in triangles for ren-
dering without holes, including concave polygons. This technique can change the
winding rule of tessellation (see the Red Book of OpenGL, ch. 11) and determine if the
triangles resulting are stored in a unique geometry object or in different geometries.

Next example, shows how to tessellate a polygon:

Tessellator t = new Tessellator();

t.setTessellationType(Tessellator.TessellationType

.TESS TYPE GEOMETRY);

t.setWindingType(Tessellator.WindingType

.TESS WINDING ODD);

t.retessellatePolygons(geometry);

56 TABLE OF CONTENTS

Optimizer

This class traverse the scene-graph to improve rendering efficiency. There is several
options imported from OSG optimizer class. See the OSG documentation before to
change this options. The next example optimizes a geometry converting it into a tri-
angle strip.

Optimizer opt = new Optimizer();

try {
opt.optimize(geometry,

Optimizer.OptimizationOptions.TRISTRIP GEOMETRY);

} catch (NodeException e1) {
e1.printStackTrace();

}

Camera HUD

Exports the OSG camera HUD functionality to be used in Java side. The following
code shows how to create a camera HUD and add a axis node into it. A full imple-
mentation of this example is available on “Axis Example” of the examples framework.
See the AxisExample class in examples package of source code.

CameraHUD hud = new CameraHUD();

Group root = new Group();

Axis ejes = new Axis();

root.addChild(hud);

hud.addChild(ejes);

Normals

This class draw the normals of a given geometry or node of the scene-graph. To use
this class, follow the next code:

Group g = new Group();

try {
g.addChild(new Normals(osgDB.readNodeFileFromResources

TABLE OF CONTENTS 57

("/cow.ive"),1,Normals.Mode.VERTEX));

g.addChild(osgDB.readNodeFileFromResources("/cow.ive"));

} catch (NodeException e1) {
}

A full implementation of this example is available on “Basic Viewer Example” of
the examples framework. See the BasicViewerExample class in examples package of
source code.

OSGExtruder

Our osgVP libraries include a geometry extruder utility that can be used as shown in
the following code:

Group g = new Group();

Geode ge = new Geode();

Vector<Vec3> shape = new Vector<Vec3>();

shape.add(new Vec3(0, 0, 0));

shape.add(new Vec3(0, 0, 5));

shape.add(new Vec3(0, 5, 5));

shape.add(new Vec3(0, 5, 0));

OSGExtruder extruder = new OSGExtruder();

extruder.start();

for (int i = shape.size() - 1; i >= 0; i--)

extruder.addPoint3D(shape.get(i));

Vec3 result = shape.get(1).crossProduct(shape.get(3));

extruder.extrude(result);

extruder.finish();

ge.addDrawable(extruder.getGeometry());

g.addChild(ge);

A full implementation of this example is available on “Extrusion Example” of the
examples framework. See the ExtrusionExample class in example’s package of source

58 TABLE OF CONTENTS

code.

A specific implementations of the OSGExtruder for points, polylines and polygons
are available in the package too.

OSGVP Terrain

In this section, you will learn how to build planets and terrains using osgVP-terrain
library and how to visualize and manipulate them in your own application. Next, we
present the layer management for textures and elevations as well as the editable layer
properties.

The Terrain View

Since a terrain is a node into the scene graph, you can use a viewer of osgVP-viewer
library or a default viewer of OpenSceneGraph to visualize it. But the terrain special
characteristics like the ellipsoidal geometry, the coordinate system or the huge size of
the terrain, forces to use a special viewer adapted to the terrain needs.

There is a specific TerrainViewer class inside the osgVP-terrain library. This viewer
inherit his methods of the OSGViewer class defined in the osgVP-viewer library and
re-implements the scene graph cull visitor to solve some issues with the Z-buffer. To
use this terrain viewer for visualization is highly recommended instead of the other
OpenSceneGraph based viewers.

Create a terrain viewer

The procedure to create a terrain viewer is similar to the procedure to create an OS-
Gviewer. First of all, you must create a new IViewerContainer variable to access the
canvas and viewer properties.

private static IViewerContainer canvas3d;

59

60 TABLE OF CONTENTS

Later the TerrainViewer instance can be created and assigned to the canvas. The
first parameter of the createViewer method specifies the viewer type. A viewer can be a
CANVAS VIEWER or a JPANEL VIEWER type. In the second parameter of the method
you have to assign the recently created terrain viewer. A terrain viewer can be added
into a JPanel and integrated in your application.

JPanel jContentPane = new JPanel();

jContentPane.setLayout(new BorderLayout());

TerrainViewer planetViewer = new TerrainViewer();

canvas3d = ViewerFactory.getInstance().createViewer(

ViewerFactory.VIEWER TYPE.CANVAS VIEWER,

terrainViewer);

jContentPane.add((Component) canvas3d, BorderLayout.CENTER);

ViewerFactory.getInstance().startAnimator();

When a terrain viewer is created, three new nodes are created and added to the
scene graph. A osgVP-viewer viewer only has a method called setSceneData to add
nodes into the scene graph, but in the terrain viewer the scene data is composed by
three void nodes: terrain node, features node and camera hud node with their set
and get methods. The methods setSceneData and getSceneData are still available in
the terrain viewer but is recommended don’t use them because you have to keep the
structure of the scene graph. A default special manipulator for terrain navigation
called TerrainCameraManipulator is added to the viewer. We will analyze the meth-
ods for add nodes to scene graph and how to use a manipulator in depth in the next
sections.

We would like to remind you that a terrain viewer inherits his methods from the
OSGViewer class defined in the library osgVP-viewer. You can use this methods to
modify the viewer properties. Before your application finalize you must call the dis-
pose method of the viewer and stop the animator.

jFrame.addWindowListener(new WindowAdapter() {
public void windowClosing(WindowEvent e) {

ViewerFactory.getInstance().stopAnimator();

canvas3d.dispose();

}

TABLE OF CONTENTS 61

});

Set the scene data in a terrain viewer

The scene data in a terrain viewer must be distributed in three different nodes accord-
ing to the type of visualization of the node. All terrain nodes must be included in the
terrain node of the scene data because the terrain viewer needs this nodes to compute
some intersections with them. This intersections are used in the terrain manipulator
of the viewer and to compute the near and the far planes of the view.

The nodes added in the features group aren’t used in the compute of the intersec-
tions for manipulate the view. You can use this node to add some 3D geometry in the
surface of your terrain.

Finally the camera hud node let you to add some nodes in the display that are
always visible like text or images with information useful for the users.

You can add some nodes into the scene graph to test your new viewer. For exam-
ple, you can create a new terrain with the default constructor (it builds the Earth) and
add to the scene graph.

Terrain earth = new Terrain();

terrainViewer.addTerrain(earth);

By default, the position of the camera when you build a viewer is inside the planet.
You must move the camera to a new position for view the whole planet.

Camera cam = new Camera();

cam.setViewByLookAt(earth.getRadiusEquatorial() * 5.0, 0,

0, 0, 0, 0, 0, 0, 1);

terrainViewer.setCamera(cam);

Now, we can put some 3D models in the terrain surface. For example, you can put
a OpenSceneGraph model called cow.ive in the North Pole. Adding a matrix transform
to the model let you set the scale and the position in the scene graph.

double factor = earth.getRadiusEquatorial() / 20.0;

PositionAttitudeTransform transform =

new PositionAttitudeTransform();

62 TABLE OF CONTENTS

transform.addChild(osgDB.readNodeFileFromResources("/cow.ive"));

transform.setScale(new Vec3(factor,factor,factor));

transform.setPosition(new Vec3(0,0,earth.getRadiusPolar()*1.1));

terrainViewer.addFeature(transform);

Finally you can add some information always visible in the screen. For example,
you can add some text in the HUD node.

Text info = new Text();

info.setText("Terrain View Example");

terrainViewer.addNodeToCameraHUD(info);

Using camera manipulators

A camera manipulator define how to move the camera in the scene. By default, a
TerrainViewer set a CustomTerrainManipulator. This camera manipulator is specific for
terrain navigation. It defines three basic movements: Zoom, Azimut and Roll. The
first one, let you to move closer or away from the terrain surface. The second one, let
you to change the angle of inclination and the last let you move around the terrain
surface.

By default, there are a combination of button mouse and keys for each movement.
You can add more keys and mouse combinations for movement with the method reg-
istryActionMask of the manipulator, where the first parameter indicates the movement
type, the second one the mouse mask and the last the key mask associated. For exam-
ple, if you want to add a new combination of the left mouse button and the a key for
change the Azimut you can use the following line:

manip.registryActionMask("AZIMUT",

MouseButtonMaskType.LEFT MOUSE BUTTON, ’a’);

For remove the last combination you can use the unregistry method:

manip.unRegistryActionMask("AZIMUT",

MouseButtonMaskType.LEFT MOUSE BUTTON, ’a’);

Aslo you can change the speed of the movement for the Zoom and Roll actions
with the methods setRollFactor and setZoomFactor. Furthermore, there are set and get

TABLE OF CONTENTS 63

methods for specify the minimum and maximum distance of the camera from the
center of the planet: setMinimumDistance, setMaximumDistance, getMinimumDistance
and getMaximumDistance. Finally, you have some methods to force the orientation of
the planet to the North: setEnabledNorthOrientation or forceNorthOrientation.

manip.setMinimumDistance((float) earth.getRadiusEquatorial());

manip.setMaximumDistance((float) earth.getRadiusEquatorial()*5.0f);

manip.setEnabledNorthOrientation(true);

This sample code is available in the package UserGuide of osgvp-examples and
should look like the following image.

Define a terrain

When you create a terrain with the default constructor it build an ellipsoidal Earth
planet in a cartesian coordinate system. But you can specify some parameters in the
constructor to create a lot of different terrains.

When you would define a terrain you can specify his name in the first parameter
of the constructor. The second one specify the type of the coordinate system, it could
be Geocentric for ellipsoidal terrains in cartesian coordinate system, Geographic for
plane terrains in cartesian coordinate systems and Projected for plane terrains in carte-
sian or UTM coordinate systems. The third parameter define the format of the next

64 TABLE OF CONTENTS

parameter (the coordinate system name) and usually is set to WKT. The next param-
eter is the coordinate system name, in a Geocentric or Geographic terrain is usually
set to “EPSG:4326” and in a Projected terrain it must be set in UTM coordinates like
“EPSG:23030”. After the coordinate system name you have to set four parameters that
indicates the extent of the terrain (always in the units of the coordinate system speci-
fied in the coordinate system name). Finally the two last parameters are the equatorial
and the polar radius of the planet respectively.

Terrain mars = new Terrain("Mars",

CoordinateSystemType.GEOCENTRIC, "WKT", "EPSG:4326",

-180.0, -90.0, 180.0, 90.0, 3396200, 3376200)

Alternatively, you can define a default terrain and use the set and get methods
to change some parameters. The following code is equivalent to the code of the last
paragraph.

Terrain mars = new Terrain();

mars.setTerrainName("Mars");

mars.setCoordinateSystemType(CoordinateSystemType.GEOCENTRIC);

mars.setCoordinateSystemFormat("WKT");

mars.setCoordinateSystemName("EPSG:4326");

mars.setExtent(-180.0, -90.0, 180.0, 90.0);

mars.setRadiusEquatorial(3396200);

mars.setRadiusPolar(3376200);

Using this methods you can create a lot of differents planets. For example, you can
created a projected view of the autonomous region of Valencia. First you must create
a terrain viewer with the methods explained in the previous section. Then you can
add a new projected terrain specifying the dimensions in the appropriate coordinate
system and add to the terrain viewer.

private static Terrain terrain;

terrain = new Terrain("Valencia", Terrain.CoordinateSystemType

.PROJECTED, "WKT", "EPSG:23030", 0, 4000000, 1000000,

5000000, 6378137.0, 6356752.3142);

terrainViewer.addTerrain(terrain)

TABLE OF CONTENTS 65

Don’t forget to put the camera in the correct position to see all the terrain.

double difx = (terrain.getExtent().xMax()

- terrain.getExtent().xMin()) / 2.0d;

double dify = (terrain.getExtent().yMax()

- terrain.getExtent().yMin()) / 2.0d;

double posx = terrain.getExtent().xMin() + difx;

double posy = terrain.getExtent().yMin() + dify;

double height = Math.sqrt(difx * difx + dify * dify) * 4.0f;

Camera cam = new Camera();

cam.setViewByLookAt((float) posx, (float) posy, (float) height,

(float) posx, (float) posy, 0f, 0f, 1f, 0f);

terrainViewer.setCamera(cam);

All of the explained methods can be changed in real time but you have to keep in
mind the correlation between the coordinate system and the units of the extent. For
example, you can add a key listener to the example for change the size of the terrain
extent.

canvas3d.addKeyListener(new KeyListener() {
public void keyPressed(KeyEvent e) {

if (e.getKeyCode() == KeyEvent.VK 1) {
terrain.setExtent(0, 4000000,

1000000, 5000000);

} else if (e.getKeyCode() == KeyEvent.VK 2) {
terrain.setExtent(0, 4000000,

2000000, 5000000);

}
}

}});

Finally, this sample code is available in the package UserGuide of osgvp-examples.
Your example should look like the figure 4.1 when the key 1 is pressed and like the
figure 4.2 when the key 2 is pressed.

66 TABLE OF CONTENTS

Figure 16: Projected terrain sample with the extent of the autonomous region of Valencia.

Figure 17: Projected terrain sample after change the size of his extent.

Layer management

The class LayerManager give you the necessary methods to afford the layer manage-
ment. You can add raster layers like textures or elevations in your terrain. One Layer-
Manager can be shared by two differents terrains but in this case any change of layer
parameters is reflected in both terrains.

TABLE OF CONTENTS 67

Adding a layer manager

The method setLayerManager of the Terrain class, allow to set a layer manager who
manages all of the terrain layers.

LayerManager manager = new LayerManager();

terrain.setLayerManager(manager);

Adding layers

To add a raster layer into the layer manager, we need to use the class RasterLayer and
set the necessary parameters like the layer extent. After this, we can add this layer
to the layer manager and it will be applied to the terrain automatically. We also can
modify the layer parameters in any time.

RasterLayer layer0 = new RasterLayer();

layer0.setNodeName("Layer 0");

layer0.setExtent(new Extent(Math.toRadians(-180.0),

Math.toRadians(-90.0),

Math.toRadians(180.0),

Math.toRadians(90.0)));

layer0.setEnabled(true);

layer0.setOpacity(1.0f);

manager.addLayer(layer0);

Also, we can add a HeighfieldLayer for elevation data:

Heightfield layer1 = new Heightfield();

layer1.setNodeName("Layer 1");

layer1.setExtent(new Extent(Math.toRadians(-180.0),

Math.toRadians(-90.0),

Math.toRadians(180.0),

Math.toRadians(90.0)));

layer1.setEnabled(true);

layer1.setVerticalExaggeration(1.0f);

68 TABLE OF CONTENTS

manager.addLayer(layer1);

And finally, add a VectorLayer to manage featuers with multiresolution:

VectorLayer layer2 = new VectorLayer();

layer2.setNodeName("Layer 2");

layer2.setExtent(new Extent(Math.toRadians(-180.0),

Math.toRadians(-90.0),

Math.toRadians(180.0),

Math.toRadians(90.0)));

layer2.setEnabled(true);

layer2.setDensity(1.0f);

manager.addLayer(layer2);

By default when a layer is added, it is push at the end of the list (top on visualiza-
tion) but the metod addLayer let us to give an specific order.

manager.addLayer(layer2, 3);

Creating data drivers

Each layer need to retrieve data from a source. The class who manages each request
and how to get the necessary data from the source is called DataDriver. By the way,
the same data driver can retrieve data for one or more layers, and get it from one
or more sources, depending of the implementation. In the case of Java applications,
osgVP-terrain offers a JavaDataDriver class which exports the necesary functionallity
for retrieving data froma Java sources. Each data triver has a DataLoader interface
where the user can process the retrieving events and get the data from any source.

The JavaDataDriver needs to inject the data using the OSG viewer update traverse.
If we don’t add the JavaDataDriver to the same viewer of the terrain, the data never
arrives to the tiles of the terrain.

// Data driver

JavaDataDriver jdd = new JavaDataDriver();

canvas3d.getOSGViewer().addUpdateOperation(jdd);

TABLE OF CONTENTS 69

After add the driver to our viewer, we need to implement the data loader inter-
face, and define which is our data source depending of the parameters of the request
event. Notice, in this example we return diferent data for each type of layer, but other
interesting parameters like the layer identifier or the extent are available to improve
the functionallity of the driver and retrieve more specifically data from source.

// Set the data loader

jdd.setDataLoader(new DataLoader() {
public UpdateDataEvent loadData(RequestDataEvent rde)

{
/// Build the update event

UpdateDataEvent ude = new UpdateDataEvent();

ude.copyDataFromRequest(rde);

if(rde.getLayer().getLayerType()

== Layer.LayerType.HEIGHTFIELDLAYER)

{
ude.setHeightfieldData(elevation.getPath(),

"tiff");

}

if(rde.getLayer().getLayerType()

== Layer.LayerType.RASTERLAYER)

{
ude.setRasterData(texture.getPath(),

"jpg");;

}

if(rde.getLayer().getLayerType()

== Layer.LayerType.VECTORLAYER)

{
ude.setVectorData("cow.ive", "ive");

}

return ude;

}
});

70 TABLE OF CONTENTS

Finally we can add our driver to each layer. Don’t forget to associate a driver
for each layer because it defines how to retrieve the data. We are goint to use the
same driver for each layer in this example. Of course, you can define different drivers
instead of only one.

layer0.setDataDriver(jdd);

layer1.setDataDriver(jdd);

layer2.setDataDriver(jdd);

Removing layers

When a layer is no longer used you can remove from layer manager.

manager.removeLayer(layer0);

We can remove a layer given its order too.

manager.removeLayer(3);

Reorder layers

The manager let us move layers to a different position using the moveLayer method
and specifying the old position and the new ones.

int oldposition = 0;

int newposition = 3;

Get a layer

Since we can add the same layer in different positions (without create a new layer),
we can retrive the current layer positions in the layer manager using the following
method:

Vector<Integer> orders = manager.getOrder(layer0);

Also we can get a layer given a current position:

Layer layer = manager.getLayer(0);

TABLE OF CONTENTS 71

Forcing to retrieve data

When some of the data isn’t displayed correctly, we can force to retrieve all the data
again for a layer using the method invalidateLayer:

manager.invalidateLayer(layer);

Changing layer properties

All layers has general properties like the one that indicats if a layer is enabled or dis-
abled. You can change a layer to disabled to avaiod retrieving data and don’t visualize
it (notice the retrieved data until that its keeped in the memory).

layer.setEnabled(false);

Sometimes is interesting only show a layer when you are really close to the terrain
or when you are far of it. You can establish some visibility ranges to reproduce this
behavior with this methods:

• setMinLevel: establish the minimum level of range necessary to see the layer.

• setMaxLevel: establish the maximum level of range since the layer is no longer
visible.

• setMaxResolution: they are useful to set the maximum level of the data resolu-
tion. Since this level no more data is requested but the textures are propagated
to the higher resolution ranges.

Notice that the level is a integer that indicates the number of subdivisions of the
mesh and represents the quality of the rendered data. Tip: When a layer is retrieved
the level is indicated in the retrieve event.

Also, each layer type define some specifically parameters. For example, you can
change the opacity only for the RasterLayer using the method setOpacity. For eleva-
tions you can change the vertical exaggeration with the setVerticalExaggeration. You
must put values between 0 and 1 to reduce the elevations or put values bigger than 1
to exaggerate them. You can add this methods to the key listener of your example to
change the properties of the first layer.

72 TABLE OF CONTENTS

if (e.getKeyCode() == KeyEvent.VK 7) {
layer0.setOpacity(0.5f);

}

if (e.getKeyCode() == KeyEvent.VK 8) {
layer1.setVerticalExaggeration(20.0f);

}

Finally, a full implementation of this code is available on package UserGuide of
the osgvp-examples, and shows like the next figure:

Other examples more complex are included in the examples framework. See them
for more information.

Terrain utilities

The Terrain class has other useful methods. In this section we explain them to give
more functionality to your application.

• getZoom, getLongitude, getLatitude, getAltitude: they give you the position of
the camera in the unities of the coordinate system of the planet.

TABLE OF CONTENTS 73

• convertXYZToLatLongHeight, convertLatLongHeightToXYZ: you can convert
coordinates between the XYZ and latitud, longitud and height using the real
ellipsoid of the planet. It’s very important to set the correct radius in all of the
type planets for a good performance of these methods. They are very useful to
put some 3D objects over the planet surface because all of the nodes put in the
special node scene data are in XYZ coordinate system.

74 TABLE OF CONTENTS

OSGVP Features

The osgvpfeatures library is capable to draw vectorial data such as text, points, lines,
polygons, simple geometric figures and extruded figures in a three-dimensional way.

All of this features could be edited in the same way. Text and shapes lacks some
geometric values which are essential to edit them.

Blending and color changes are supported for all the features. Adding or removing
vertexes are too supported operations. Polylines ant PixelPoints could be anti-aliased.

Users can extrude simple geometric forms using different techniques. New fea-
tures can be added without modifying classes hierarchy.

Overview

In a GIS, geographical features are often expressed as vectors, by considering those
features as geometrical shapes Different geographical features are best expressed by
different types of geometry. Each of these geometries are linked to a row in a database
that describes their attributes. This information can be used to make a map to describe
a particular attribute of the dataset.

Vector data can be displayed as vector graphics used on traditional maps, whereas
raster data will appear as an image that may have a blocky appearance for object
boundaries. Vector data can be easier to register, scale, and re-project. This can sim-
plify combining vector layers from different sources. Vector data are more compatible
with relational database environment. They can be part of a relational table as a nor-
mal column and processes using a multitude of operators.

75

76 TABLE OF CONTENTS

The visualization of vectorial data will be faster if we use the facilities that scene
graphs give us. An API that allow developers showing vectorial data with some guar-
antee must be implemented. This API will offer support to draw geometric figures
and to do basic vector operations.

Basic and common elements in a lot of GIS systems are: points, lines, polylines,
polygons and multi-polygons. This entities are those which the library could repre-
sent.

Looking for simplicity we decided to implement an abstraction layer over Open-
SceneGraph. The mapping isn’t direct between OSG and Java classes(like in osgvp-
core).This classes remains over osgvpfeatures library, implemented in C++.

Points

In GIS is useful to show points in different metric units, at least pixels and meters.
The osgVP API for Points lets the user to change the size, color, transparency, etc. dy-
namically. It works in the same way of GL POINTS, one primitive could have several
points. There are two main classes for drawing points:

• PixelPoint: represents points in pixels.

• QuadPoint: represents points in meters with a quad geometry where
the real position of the point is the center of the quad.

Let’s see some code example. A full implementation of this example is available
on “Points Example” of the examples framework. See the PointsExample class in ex-
amples package of source code.

PixelPoint points;

g = new Group();

try {
points = new PixelPoint();

} catch (NodeException e) {
e.printStackTrace();

}
points.setPointSize(5.0f);

points.setEnabledSmoothing(false);

for (int i = 0; i < 1000; i++) {

TABLE OF CONTENTS 77

Vec3 position1 = new Vec3(Math.random() * 100,

Math.random() * 100, Math.random() * 100);

Vec4 color1 = new Vec4(Math.random(), Math.random(),

Math.random(), 1);

points.addPoint(position1, color1);

}
g.addChild(points);

If you want to use QuadPoints you can set billboarding enabled to rotate the quads
to the screen. A full implementation of this example is available on “QuadPoints Ex-
ample” of the examples framework. See the QuadPointsExample class in exampless
package of source code.

QuadPoint points;

g = new Group();

try {
points = new QuadPoint();

} catch (NodeException e) {
e.printStackTrace();

}
points.setPointSize(5.0f);

points.setBillboardingEnabled(true);

for (int i = 0; i < 1000; i++) {
Vec3 position1 = new Vec3(Math.random() * 100,

Math.random() * 100, Math.random() * 100);

Vec4 color1 = new Vec4(Math.random(), Math.random(),

Math.random(), 1);

points.addPoint(position1, color1);

}
g.addChild(points);

A shape point class can be used to replace points for another geometry defined
by the user as shown in the following code. A full implementation of this example is
available on “Shape Point Example” of the examples framework. See the ShapePoin-
tExample class in examples package of source code.

private ShapePoint shape;

78 TABLE OF CONTENTS

Sphere esfera = new Sphere();

esfera.setColor(new Vec4(1.0, 0.5, 0.0, 1.0));

esfera.setDetailRatio(0.9f);

Box box = new Box();

box.setCreateTop(false);

Cylinder cylin = new Cylinder();

cylin.setCreateBody(true);

CompositeShape compostela = new CompositeShape();

compostela.addChild(esfera);

compostela.addChild(cylin);

compostela.setColor(new Vec4(1.0, 1.0, 0.0, 0.5));

shape = new ShapePoint(compostela);

for (int i = 0; i < 1000; i++) {
Vec3 position1 = new Vec3(Math.random() * 100,

Math.random() * 100, Math.random() * 100);

Vec4 color1 = new Vec4(Math.random(), Math.random(),

Math.random(), 1);

shape.addPoint(position1, color1);

}

Polylines

Drawing polylines should be easy with osgVP. The API let change the width, color,
pattern or blending of the polylines. It works with lines like OpenGL does.

Group g = new Group();

Polyline lines;

try {
lines = new Polyline();

} catch (NodeException e) {
e.printStackTrace();

}

TABLE OF CONTENTS 79

lines.setWidth(100);

//Like points, Polylines can be antialias

lines.setEnabledSmoothing(true);

lines.setEnabledBlending(true);

for (int i = 0; i < 1000; i++) {
Vec3 position1 = new Vec3(Math.random() * 10,

Math.random() * 10, Math.random() * 10);

Vec4 color1 = new Vec4(Math.random(), Math.random(),

Math.random(),Math.random());

lines.addVertex(position1, color1);

}
g.addChild(lines);

To change the pattern of a polyline you must set the pattern as a 16 bits variable
which is repeated as necessary along line feature. Then you should set the factor, it
serves to scale pattern and must be in range [1,255].

Samples:

polyline.setpattern((short)0XAAAA);

polyline.setFactor(3);

A full implementation of this example is available on “Polyline Example” of the
examples framework. See the PolylineExample class in examples package of source
code.

An extension of Polyline class is the InteractivePolyline ones, which allow to draw
a line interactively adding points one by one clicking with the mouse over a geometry
surface as shown in the next example:

Group g = new Group();

InteractivePolyline polyline = new InteractivePolyline();

g.addChild(osgDB.readNodeFileFromResources("/cow.ive"));

g.addChild(polyline);

getCanvas3D().addMouseListener(this);

getCanvas3D().addMouseMotionListener(this);

80 TABLE OF CONTENTS

float factor=0.1f;

boolean clicked;

...

public void mousePressed(MouseEvent arg0) {

if (arg0.getButton() == MouseEvent.BUTTON3) {

clicked = true;

Vec3 normal = hits.getFirstIntersection()

.getIntersectionNormal();

normal.normalize();

polyline.setMouseCoords(hits.getFirstIntersection()

.getIntersectionPoint().sum(normal

.escalarProduct(factor)));

}
try {

polyline.update();

} catch (OSGVPException e) {
e.printStackTrace();

}
polyline.setEnabledNode(true);

}

public void mouseMoved(MouseEvent arg0) {

if (clicked) {
Intersections hits = getCanvas3D().getOSGViewer()

.rayPick(arg0.getX(), arg0.getY());

Vec3 normal = hits.getFirstIntersection()

.getIntersectionNormal();

normal.normalize();

polyline.setMouseCoords(hits.getFirstIntersection()

.getIntersectionPoint().sum(normal

.escalarProduct(factor)));

TABLE OF CONTENTS 81

try {
polyline.update();

} catch (OSGVPException e) {
e.printStackTrace();

}

}
}

public void mouseReleased(MouseEvent arg0) {

Intersections hits = getCanvas3D().getOSGViewer()

.rayPick(arg0.getX(), arg0.getY());

if (arg0.getButton() == MouseEvent.BUTTON3) {

Vec3 normal = hits.getFirstIntersection()

.getIntersectionNormal();

normal.normalize();

polyline.setMouseCoords(hits.getFirstIntersection()

.getIntersectionPoint().sum(normal

.escalarProduct(factor)));

polyline.addVertex(hits.getFirstIntersection()

.getIntersectionPoint().sum(normal

.escalarProduct(factor)));

try {
polyline.update();

} catch (OSGVPException e) {
e.printStackTrace();

}
}

}

A full implementation of this example is available on “InteractivePolyline Exam-
ple” of the examples framework. See the InteractivePolylineExample class in exam-
ples package of source code.

82 TABLE OF CONTENTS

Polygons

The class Polygon involves all the polygon functionality (patterns, textures...). You
can define what kind of polygon you want to renderize: empty (only borders), filled,
pattern or point(only vertexes) polygons.

Is important when you define a polygon to specify coords for polygons into a anti-
clockwise direction for their front face to be pointing toward your, get this wrong and
you could find back face culling removing the wrong faces of your model. A texture
could be applied to the polygon, and the user can rotate, scale or translate this texture.

For convex polygons, those that OpenGL can’t paint without errors, the user will
use TessellablePolygon to triangulate convex geometries.

Example:

Polygon rect;

g = new Group();

Vec4 color = new Vec4(1.0, 1.0, 0.0, 1.0);

try {
rect = new Polygon();

} catch (NodeException e1) {
e1.printStackTrace();

}
rect.setType(Polygon.PolygonType.FILLED POLYGON);

//vertices

rect.addVertex(new Vec3(-5, 0, 0), color);

rect.addVertex(new Vec3(0, 5, 0), color);

rect.addVertex(new Vec3(-5, 10, 0), color);

rect.addVertex(new Vec3(10, 10, 0), color);

rect.addVertex(new Vec3(5, 5, 0), color);

rect.addVertex(new Vec3(10, 0, 0), color);

//normals

Vector<Vec3> normalarray = new Vector<Vec3>();

Vector<Vec3> normalarray1 = new Vector<Vec3>();

normalarray.add(new Vec3(0, 0, -1));

rect.setNormalArray(normalarray);

rect.setNormalBinding(GeometryFeature.

AttributeBinding.BIND OVERALL);

TABLE OF CONTENTS 83

g.addChild(rect);

If tessellable polygon is needed:

rect1 = new TessellablePolygon();

rect1.setType(Polygon.PolygonType.FILLED POLYGON);

rect1.addVertex(new Vec3(-5, 0, 5), color);

rect1.addVertex(new Vec3(-5, 10, 5), color);

rect1.addVertex(new Vec3(10, 10, 5), color);

rect1.addVertex(new Vec3(20, 5, 5), color);

rect1.addVertex(new Vec3(10, 0, 5), color);

rect1.setNormalArray(normalarray1);

rect1.setNormalBinding(GeometryFeature.

AttributeBinding.BIND PER VERTEX);

File texture = Util.extractFromURL(this.getClass().getResource(

"/earth.gif"));

rect1.setTexture(texture.getPath());

rect1.setEnabledBlending(true);

rect1.tessellate();

A full implementation of this example is available on “Polygon Example” of the
examples framework. See the PolygonExample class in examples package of source
code.

Text

Text has several methods that control its size, appearance, orientation, and position.
The following section describe how to control some of these parameters.To use osgText
in your application, you usually need to perform three steps:

1. To display multiple text strings using the same font, create a sin-
gle Font object that you can share between all Text objects.

2. For each text string to display, create a Text object. Specify op-
tions for alignment, orientation, position, and size. Assign the
Font object you created in step 1 to the new Text object.

3. Add your Text objects to a Geode using addDrawable(). You
can add multiple Text objects to a single Geode or create multi-

84 TABLE OF CONTENTS

ple Geode objects,depending on your application requirements.
Add your Geode objects as child nodes in your scene graph.

Text text = null;

try {
text = newText();

} catch (NodeException e) {
e.printStackTrace();

}
text.setFont("arial.ttf");

text.setText("example");

te1.setPosition(0f, 0f, 20f);

text.setCharactherSize(3.0f);

try {
g.addChild(t);

...

}

A full implementation of this example is available on “Text Example” of the exam-
ples framework. See the TextExample class in examples package of source code.

Extruded Geometries

Extrusion classes in osgvpfeatures extends of OSGExtruder class, belonging osgvp-
core library. This class is mapped against a generic extrusor, created in C++ from a
J.Hidalgo Project(Deparment of Computer System & Computation of UPV). It works
over a stack matrix system. From this class we can create specific extruders depending
the geometry we want to extrude. So, there are three specific extruders: PointExtruder,
PolylineExtruder and PolygonExtruder. They three work in a very similar way. But
the extruder returns a determinated kind of geometry depending what was the input.

The following example show how to extrude a point feature. A full implementa-
tion of this example is available on “Point Example” of the examples framework. See
the PointExtrusionExample class in examples package of source code.

Group g = new Group();

TABLE OF CONTENTS 85

Geode ge = new Geode();

PixelPoint shape = new PixelPoint();

Vec4 color = new Vec4(1.0, 0.0, 0.0, 1.0);

Vec4 color1 = new Vec4(1.0, 1.0, 0.0, 1.0);

Vec4 color2 = new Vec4(1.0, 0.0, 1.0, 1.0);

shape.addVertex(new Vec3(0, 0, 0), color);

shape.addVertex(new Vec3(0, 0, 0), color1);

shape.addVertex(new Vec3(0, 0, 0), color2);

shape.addVertex(new Vec3(0, 0, 0), color1);

shape.addVertex(new Vec3(0, 0, 0), color);

shape.addVertex(new Vec3(0, 0, 0), color2);

shape.addVertex(new Vec3(0, 0, 0), color1);

PointExtruder extruder = new PointExtruder();

Vector<Vec3> vec = new Vector<Vec3>();

Vector<Double> vecdou = new Vector<Double>();

vec.add(new Vec3(0, 0, 1));

vec.add(new Vec3(0, 1, 0));

vec.add(new Vec3(1, 0, 0));

vec.add(new Vec3(0, 0, -1));

vec.add(new Vec3(0, -1, 0));

vec.add(new Vec3(-1, 0, 0));

vec.add(new Vec3(1, 1, 0));

vecdou.add(5.0);

vecdou.add(10.0);

vecdou.add(5.0);

vecdou.add(10.0);

vecdou.add(5.0);

vecdou.add(10.0);

vecdou.add(15.0);

ShapePoint cero = new ShapePoint();

Sphere sphera = new Sphere();

try {

86 TABLE OF CONTENTS

cero.setShape(sphera);

} catch (ChildIndexOutOfBoundsExceptions e2) {
e2.printStackTrace();

} catch (NodeException e2) {
e2.printStackTrace();

}

cero.addPoint(new Vec3(0, 0, 0), new Vec4(1, 0, 1, 1));

try {
g.addChild(cero);

} catch (NodeException e1) {
e1.printStackTrace();

}

try {
ge.addDrawable(extruder.extrude(shape, vec, vecdou));

} catch (NodeException e3) {
e3.printStackTrace();

}

try {
ge.getOrCreateStateSet().setLightingMode(

Node.Mode.OFF | Node.Mode.PROTECTED);

} catch (InvalidValueException e2) {
e2.printStackTrace();

}

try {
g.addChild(ge);

} catch (NodeException e1) {
e1.printStackTrace();

}

Extruding polyline features is possible too, as shown in next example. A full im-
plementation of this example is available on “Polyline Extrusion Example” of the ex-
amples framework. See the PolylineExtrusionExample class in examples package of
source code.

TABLE OF CONTENTS 87

Group g = new Group();

Geode ge = new Geode();

Polyline shape = new Polyline();

Vec4 color = new Vec4(1.0, 0.0, 0.0, 1.0);

Vec4 color1 = new Vec4(1.0, 1.0, 0.0, 1.0);

Vec4 color2 = new Vec4(1.0, 0.0, 1.0, 1.0);

shape.addVertex(new Vec3(0, 0, 0), color);

shape.addVertex(new Vec3(5, 0, 0), color1);

shape.addVertex(new Vec3(5, 5, 5), color2);

shape.addVertex(new Vec3(5, 10, 0), color1);

shape.addVertex(new Vec3(0, 5, 0), color);

shape.addVertex(new Vec3(-5, 5, 0), color2);

PolylineExtruder extruder = new PolylineExtruder();

ShapePoint cero = new ShapePoint();

Sphere sphera = new Sphere();

try {
cero.setShape(sphera);

cero.addPoint(new Vec3(0, 0, 0), new Vec4(1, 0, 1, 1));

g.addChild(cero);

ge.addDrawable(extruder.extrude(shape,

new Vec3(0.0, 0.0, 1.0), 10));

ge.getOrCreateStateSet().setTwoSidedLighting(true,

Node.Mode.ON);

g.addChild(ge);

} catch (ChildIndexOutOfBoundsExceptions e1) {
e1.printStackTrace();

} catch (NodeException e1) {
e1.printStackTrace();

}
}

See next example to view a polygon extrusion. A full implementation of this ex-
ample is available on “Polygon Extrusion Example” of the examples framework. See
the PolygonExtrusionExample class in examples package of source code.

88 TABLE OF CONTENTS

PolygonExtruder pol = new PolygonExtruder();

Polygon shape= null;

try {
shape = new Polygon();

} catch (NodeException e) {
e.printStackTrace();

}

shape.addVertex(new Vec3(2, 0, 0), color);

shape.addVertex(new Vec3(2, 0, 5), color);

shape.addVertex(new Vec3(2, 5, 5), color);

shape.addVertex(new Vec3(2, 5, 0), color);

pol.extrude(shape, 10);

Geode ge = new Geode();

ge.addDrawable(pol.getGeometry());

Particles

A system particle can be used like a feature as shown in the next example:

ParticleSystem ps = new ParticleSystem();

root.addChild(ps.getGroup());

root.addChild(ps.getPat());

A full implementation of this example is available on “Particle Example” of the
examples framework. See the ParticleSystemExample class in examples package of
source code.

You can look up the examples framework for further information. We explained
the most common features available in this package, by the way other helpful classes
are available in this library.

OSGVP Manipulator

In this section, you will learn how to use the classes provided by the library osgVP-
manipulator. You will learn how to add a manipulator to a node of the scene-graph
and how to transform it, as well how to manage all the manipulators present in the
scene. We provide the same manipulators implemented in OSG, as well as a new
type of manipulator that allows the transformation of individual vertex of a given
geometry.

The Manipulator node

To add a Manipulator to an existing node is a very simple task. First of all, you have
to create an instance of the class Manipulator. There are two possibilities to create a
Manipulator.

public Manipulator();

public Manipulator(String draggerType);

The only difference between these two constructors is what type of manipulator
will be created. The argument draggerType specifies this type. If no argument is passed,
the default manipulator will be created.

Types of dragger

Here is a list with all the draggers available in this version of the library:

89

90 TABLE OF CONTENTS

Scale1DDragger: Scales the object over an axis.

Scale2DDragger: Scales the object over two given axis.

ScaleAxisDragger: Scale the object over the three axis.

TabBoxDragger: Scales the object through the eight corners of a box containing
the object. Also permits to translate the object picking on one of the six planes which
form this box. This is the default manipulator.

TabPlaneDragger: Scales and translates the object through a plane.

TabPlaneTrackballDragger: Scales and translates the object through a plane. Also,
rotates the object through a sphere.

TrackballDragger: Rotates the object through a sphere that contains it.

Translate1DDragger: Translates the object over an axis.

Translate2DDragger: Translates the object over two given axis.

TranslateAxisDragger: Translates the object over the three axis.

TranslatePlaneDragger: Translates the object over a plane.

Adding a Node

Once a Manipulator has been created, the method

public boolean addChild(Node child);

inserts the given node inside the manipulator. This method can be used as many
times as wanted, therefore a Manipulator can transform several objects at the same
time.

Other available methods

public void setDragger(String draggerType);

Changes the dragger type.

public Node getChild(int i);

TABLE OF CONTENTS 91

Returns the node at the position i.

public int getNumChildren();

Returns the number of nodes being manipulated at the moment.

public boolean removeChild(Node child);

Removes the child

public boolean removeChildren();

Removes all the chidren inside the Manipulator.

public Group getSelection();

Returns the subgraph with all the objects transformed.

public boolean removeChild(int i);

Removes the child number i of the Manipulator

public void setChild(int i, Node node);

Puts the node as the chid number i of the Manipulator.

public String getDragger();

Returns the dragger type.

Setting the Manipulator Handler

Once one or more nodes have been added to a manipulator, you can instantiate the
class ManipulatorHandler in order to interact with them.

ManipulatorHandler();

Once the new class has been created, it must be added as an EventHandler to the
OSGViewer.

92 TABLE OF CONTENTS

getCanvas3D().getOSGViewer().addEventHandler(hand);

Now, the object can be transformed depending on the dragger type selected. If
your application wants to enable or disable this handler, use the method:

public void setActive(boolean active);

Manipulate an object

Let’s see an example that shows the use of the Manipulator node. (Note that this is not
exactly the same code present in the library examples. It has been simplified to give
a better understanding of the functionality. For example, the try/catch clauses have
been removed)

private ManipulatorHandler hand;

private Manipulator manip;

private Node cow;

cow = osgDB.readNodeFileFromResources("/cow.ive");

manip = new Manipulator(Manipulator.DraggerType

.TRANSLATE PLANE DRAGGER);

manip.addChild(cow);

hand = new ManipulatorHandler();

getCanvas3D().getOSGViewer().addEventHandler(hand);

In this example, the 3D model stored in the file cow.ive is loaded as a node. The
next step is to create an instance of Manipulator. In this case, we have chosen the
TRANSLATE PLANE DRAGGER, which draws a plane around the object and allows
to translate the objects clicking on it. Later, we add the loaded node as a child of the
Manipulator. Instantiating a ManipulatorHandler and adding it to the OSGViewer
ends the process.

TABLE OF CONTENTS 93

Figure 18: Node being Manipulated.

A full implementation of this example is available on “Simple Manipulator Ex-
ample” and “Feature Manipulation Example” of the examples framework. See the
SimpleManipulator and FeatureManipulationExample class in examples package of
source code.

Managing the Scene with EditionManager

EditionManager is a class created to help the developers to build a more advanced
edition systems. It allows the creation and management of many Manipulators at the
same time, and even permits the interaction between them. Its use is very similar to
the Manipulator class. The following example shows its use:

manager = new EditionManager(scene);

getCanvas3D().addKeyListener(new ViewerStateListener(

getCanvas3D().getOSGViewer()));

getCanvas3D().addKeyListener(this);

hand = new ManipulatorHandler();

getCanvas3D().getOSGViewer().addEventHandler(hand);

getCanvas3D().addMouseListener(this);

94 TABLE OF CONTENTS

A full implementation of this example is available on “Edition Manager Example”
of the examples framework. See the EditionManager class in examples package of
source code.

Methods implemented by Edition Manager

public Node getScene()

Gets the part of the scene not manipulated.

public Group getTransformedScene()

Gets the whole transformed scene without the draggers.

public void setScene(Node node)

Changes the whole scene in the EditionManager.

public int getNumChildren()

Returns the number of children.

public Manipulator addNode(int i)

Creates a manipulator for the node at the position i in the scene branch of the EM.

public Node removeNode(Node object)

Extracts the node from the manipulator and returns it to the scene branch.

public void removeAllNodes()

Extract all transformed nodes and put them in the scene branch.

public void deleteSelectedNodes()

Deletes all the Manipulators and the nodes inside them.

TABLE OF CONTENTS 95

public void changeDragger(String draggerType)

Changes the type of all the active draggers.

public String getDraggerType()

Returns the type of the dragger.

public void group()

Gets all manipulators in the scene and creates one with all of them.

public void ungroup()

Separates different nodes present in a manipulator and makes one manipulator for
each of them.

Implementing the picking functionality

To interact with the EditionManager class, your Java application must implement at
least one MouseListener. The following code shows one simple example.

public void mouseClicked(MouseEvent arg0) {
if (arg0.getButton() == MouseEvent.BUTTON1) {
Intersections polytopeHits =

getCanvas3D().getOSGViewer()

.rayPick(manager, arg0.getX(),

arg0.getY(),

Manipulator.NEG MANIPULATOR NODEMASK);

if (polytopeHits.containsIntersections()) {
Intersection hit = polytopeHits.

getFirstIntersection();

Node nodeHit = (Node) (hit.getNodePath().get(2));

int k;

k = nodeHit.getParent(0).getChildIndex(nodeHit);

AddSelectionCommand addCommand =

new AddSelectionCommand(k, manager);

96 TABLE OF CONTENTS

addCommand.execute();

commands.add(addCommand);

} else {

RemoveAllSelectionCommand removeAllCommand =

new RemoveAllSelectionCommand(manager);

removeAllCommand.execute();

commands.add(removeAllCommand);

}

}
}

In this example, when the left button of the mouse is clicked, it computes the inter-
sections with the objects present in the scene and stores the first object that intersects.
Later, the subgraph containing the object is included in a new Manipulator. This pro-
cess is shown in the figure next figure:

Figure 19: Adding a node to the EditionManager.

TABLE OF CONTENTS 97

If the mouse is clicked and no intersections are computed, the listener makes all
the manipulators dissapear. One important part is how to extract the node to add to
the EditionManager. In this example, we are assuming that the EM is the root node
of the scene, therefore the nodepath level selected is 2 (as can be seen in the figure). If
the EM is in a sublevel of the graph, the nodepath level selected must be changed. For
example, if the EM is a child of the root of the scene, the nodepath level selected must
be 3.

A full implementation of this example is available on “Picking Example” of the
examples framework. See the PickingExample class in examples package of source
code.

The GeometryManipulator node

The Manipulator node transforms the objets through a MatrixTransform in the scene-
graph. In this way, the transformations are applied to the whole subgraph below
it. To achieve a more advanced functionality that allows to edit each vertex of the
object individually, we have created the GeometryManipulator node. The use of this
node is very similar to the Manipulator. First of all, you have to instantiate the class
GeometryManipulator with the following method:

public GeometryManipulator(Geometry geo,

Vector<Integer> indexArray);

The first argument is the Geometry to be manipulated, the second is a vector that
contains the selected vertex indices of that geometry. The ManipulatorHandler class
must be instantiated and added to the OSGViewer to transform the vertices too. In the
next figure you can see a geometry with some of its vertices being manipulated.

98 TABLE OF CONTENTS

Figure 20: GeometryManipulator example.

OSGVP Symbology

In this section, you will learn how to use the classes provided by the library osgVP-
symbology. In a GIS, the symbols are used to represent a feature like a point, with a
object that represents this point, for example with a image. With the osgVP-symbology
library, we can change how a 3D GIS feature (defined with osgVP-features) is rendered
in the screen and change this symbols interactively.

The symbol visitor

For replace the current features for the symbols in the scene-graph, we are defined
a symbol visitor to traverse it and replace the geometry for the current one. There
is specific visitors for each type of symbol, however the class Symbol3DVisitor can
manage all of them and apply the correct one.

Basic symbols

We provide the basics symbols like boxes, circles, cones, cylinders, text, spheres, etc.
for render features. For example, if we have defined a set of points in our scene-graph,
we can represent them with boxes as shown in the next example code:

Group root = new Group();

BoxSymbol bs = new BoxSymbol();

Symbol3DVisitor sv = new Symbol3DVisitor();

// Point features

99

100 TABLE OF CONTENTS

for (int i = 0; i < 1000; i++) {

Point3D p = new Point3D();

p.setX(Math.random() * 100);

p.setY(Math.random() * 100);

p.setZ(Math.random() * 100);

Vec4 color = new Vec4(Math.random(), Math.random(),

Math.random(), 1 - Math.random());

bs.addPoint(p, color);

}

bs.setPointSize(2);

bs.setSizeMetric(PointSymbol3D.SizeMetric.PIXELS);

// Replace the points by symbols

bs.traverse(sv);

// Add the result to scenegraph

root.addChild(sv.getSceneData());

A full implementation of this example is available on “BoxSymbol Example” of
the examples framework. See the BoxSymbolExample class in examples package of
source code. Other basic symbols examples are available in this framework too.

Composite symbols

In addition to the basic symbols, the composite symbol can represent a feature like a
group of basic symbols as shown in this example:

Group root= new Group();

CircleSymbol ps = new CircleSymbol();

PolylineSymbol3D polylinesym = new PolylineSymbol3D();

FillSymbol3D fillsym = new FillSymbol3D();

CompositeSymbol3D composite = new CompositeSymbol3D();

Symbol3DVisitor sv= new Symbol3DVisitor();

TABLE OF CONTENTS 101

//Add features

for (int j =0; j <10 ; j++)

{
Polyline3D polyline = new Polyline3D();

Polygon3D poli = new Polygon3D();

Vec4 color = new Vec4(Math.random(), Math.random(),

Math.random(), 1 - Math.random());

Vec4 color1 = new Vec4(Math.random(), Math.random(),

Math.random(),1 - Math.random());

for (int i = 0; i < 3; i++) {
Point3D p = new Point3D();

p.setX(Math.random() * 100);

p.setY(Math.random()* 100);

p.setZ(j*50);

Vec3 direction = new Vec3(Math.random(),

Math.random(), Math.random());

double height = Math.random()*10;

//cs.addPointExtrusion(p, color,height,direction);

polyline.addVertex(p);

poli.addVertex(p);

}
polylinesym.addPolyline(polyline, color1);

fillsym.addPolygon(poli,color);

}

polylinesym.setStipple(1,(short) 0XAAAAA);

polylinesym.setWidth(3f);

polylinesym.setLineLoop(true);

composite.addSymbol(fillsym);

composite.addSymbol(polylinesym);

composite.traverse(sv);

root.addChild(sv.getSceneData());

102 TABLE OF CONTENTS

A full implementation of this example is available on “Composite Symbol Exam-
ple” of the examples framework. See the CompositeSymbolExample class in examples
package of source code.

Extruded symbols

Also, the library provides the mechanism to extrude points, polylines and polygons
like symbols:

Group root = new Group();

PointExtrusionSymbol cs = new PointExtrusionSymbol();

Symbol3DVisitor sv = new Symbol3DVisitor();

// Add features

for (int i = 0; i < 1000; i++) {
Point3D p = new Point3D();

p.setX(Math.random() * 100);

p.setY(Math.random() * 100);

p.setZ(Math.random() * 100);

Vec4 color = new Vec4(Math.random(), Math.random(),

Math.random(), 1 - Math.random());

Vec3 direction = new Vec3(Math.random(), Math.random(),

Math.random());

double height = Math.random()*10;

cs.addPointExtrusion(p, color,height,direction);

}

cs.traverse(sv);

root.addChild(sv.getSceneData());

A full implementation of this example is available on “Point Extrusion Symbol
Example” of the examples framework. See the PointExtrusionSymbolExample class
in examples package of source code. A example for polygon and polyline extrusion is
also available.

TABLE OF CONTENTS 103

Node symbols

Finally, we can use any OSG geometry like a symbol using the node symbol class:

Group root = new Group();

NodeSymbol3D cs = new NodeSymbol3D();

Symbol3DVisitor sv = new Symbol3DVisitor();

// Add features

for (int i = 0; i < 1000; i++) {
Point3D p = new Point3D(0,0,0);

p.setX(Math.random() * 100);

p.setY(Math.random() * 100);

p.setZ(Math.random() * 100);

Vec4 color = new Vec4(Math.random(), Math.random(),

Math.random(), 1 - Math.random());

cs.addPoint(p, color);

}

cs.setPointSize(30);

cs.setNode(osgDB.readNodeFileFromResources("/cow.ive"));

cs.traverse(sv);

root.addChild(sv.getSceneData());

A full implementation of this example is available on “Node Symbol Example” of
the examples framework. See the NodeSymbolExample class in examples package of
source code.

	Table of Contents
	Introduction
	System Requirements

	Building libraries
	Prerequisites
	Environment variables
	Compile sources
	Import projects with Eclipse
	Run the examples
	Troubleshooting and FAQ

	Download SDK
	Installation
	Getting Started
	Creating a example step by step on Eclipse

	OSGVP Viewer
	Overview
	Creating a Viewer
	Camera manipulators
	Display settings
	MultiSampling
	Stereo Settings

	Intersections
	Printing utilities

	OSGVP Core
	Osg features
	Managing the scene-graph
	Mathematic Tools
	Positioning a Node
	Geodes, Drawables & Primitives
	Geometry creation
	Using LODs
	StateSets
	Textures and Materials
	Loading images
	Updating a Node
	GLSL Programming

	Loading and saving scenes
	Lighting
	Adding Text
	Text3D
	Text
	FadeText

	Utilities
	Tessellator
	Optimizer
	Camera HUD
	Normals
	OSGExtruder

	OSGVP Terrain
	The Terrain View
	Create a terrain viewer
	Set the scene data in a terrain viewer
	Using camera manipulators

	Define a terrain
	Layer management
	Adding a layer manager
	Adding layers
	Creating data drivers
	Removing layers
	Reorder layers
	Get a layer
	Forcing to retrieve data
	Changing layer properties

	Terrain utilities

	OSGVP Features
	Overview
	Points
	Polylines
	Polygons
	Text
	Extruded Geometries
	Particles

	OSGVP Manipulator
	The Manipulator node
	Types of dragger
	Adding a Node
	Other available methods
	Setting the Manipulator Handler
	Manipulate an object
	Managing the Scene with EditionManager
	Methods implemented by Edition Manager
	Implementing the picking functionality
	The GeometryManipulator node

	OSGVP Symbology
	The symbol visitor
	Basic symbols
	Composite symbols
	Extruded symbols
	Node symbols

