
UNCLASSIFIED

Executive summary

UNCLASSIFIED

Nationaal Lucht- en Ruimtevaartlaboratorium

National Aerospace Laboratory NLR

Report no.
NLR-TR-2009-337

Author(s)
R.W. van Swol

Report classification
UNCLASSIFIED

Date
July 2009

Knowledge area(s)
Ruimtevaartgebruik

Descriptor(s)
CSW
OGC OpenGIS
Spatial data infrastrcuture

eXcat OpenGIS CSW server and client
Manual

Problem area
Within the framework of the
national Bsik programme “Space
for Geo-information (RGI)”, the
National Aerospace Laboratory
developed a metadata software tool
called eXcat. eXcat is a very
efficient tool for storing and
publishing of metadata according
the OpenGIS standard for
“Catalogue Services for Web”
(CSW)

eXcat is written in Java and
comprises a CSW server and a
CSW Client. What makes that
eXcat stands out from similar
software is that it is built on the
open-source XML database system
eXist (http://exist.sourceforge.net),

which uses web technology
standards as XPath and XQuery.
Also the Geotools, the open source
(LGPL) Java code library is used
(http://geotools.codehaus.org).
eXcat is very easy to use and allows
metadata to be saved in XML
format (e.g. ISO 19115/19139) and
to be published and queried using
the CSW standard. eXcat also
presents the metadata in a
convenient and a uniform way to
the user.

Furthermore, a second CSW client
based on Javascript and AJAX was
developed which can be included in
existing web sites using a few
simple steps.

http://exist.sourceforge.net/
http://geotools.codehaus.org/

UNCLASSIFIED

UNCLASSIFIED

eXcat OpenGIS CSW server and client
Manual

Nationaal Lucht- en Ruimtevaartlaboratorium, National Aerospace Laboratory NLR

Anthony Fokkerweg 2, 1059 CM Amsterdam,
P.O. Box 90502, 1006 BM Amsterdam, The Netherlands
Telephone +31 20 511 31 13, Fax +31 20 511 32 10, Web site: www.nlr.nl

Nationaal Lucht- en Ruimtevaartlaboratorium

National Aerospace Laboratory NLR

NLR-TR-2009-337

eXcat OpenGIS CSW server and client
Manual

R.W. van Swol

No part of this report may be reproduced and/or disclosed in any form or by any means without the prior
written permission of NLR (and contributing partners).

Customer Stichting RGI
Contract number
Owner National Aerospace Laboratory NLR
Division NLR Aerospace Systems & Applications
Distribution Limited
Classification of title Unclassified
 July 2009
Approved by:

Author

Reviewer Managing department

Document Processing Department
Note
This is the electronic version of an NLR-document. NLR considers the original version, printed on paper, as the master document. NLR is not liable for any difference between the contents of the electronic version and the master document.A paper version of this document can be requested from NLR:National Aerospace Laboratory NLRNationaal Lucht- en RuimtevaartlaboratoriumP.O. Box 905021006 BM AmsterdamThe Netherlandse-mail: info@nlr.nl

NLR-TR-2009-337

 5

Summary

Now that the INSPIRE train is at full speed on its track to a standardized geo-information world,
more and more tools become available supporting the user to get on this train. Within
Geoloketten, a very efficient tool has been developed by the National Aerospace Laboratory for
the publishing of metadata.

The importance of metadata is widely recognized, however to everyone who has investigated
the matter thoroughly, it is known that generating and maintaining metadata is not the most
appealing task. Because of that, the way in which data is described often lacks consistency and
this doesn’t improve the exchangeability of the data. Fortunately, the geo-information field is
constantly moving: an unambiguous policy is being created with regard to standards and there is
a growing consciousness that metadata is indispensable. Meanwhile, it is becoming easier to
create metadata by the support of intelligent software tools.

When datasets have been provided with metadata in a correct manner, then the question arises
how to handle and use these metadata. Often the information is saved in a database and
sometimes there is an advanced way of searching this database for specific information.
Usually, each organisation will have its own optimal way to manage data and the corresponding
metadata. However, an important feature of metadata is that it helps users to find and share
datasets. Publishing metadata on internet is thus very important for the multiple use of valuable
geo-information.

In order to streamline this process, an interoperable standard was developed by the Open
Geospatial Consortium: “Catalogue Service for Web” or CSW in short. The CSW standard
describes how digital catalogues for geospatial data and services can be consulted. For the user
this means that it is not necessary to know how the underlying database is organized in order to
be able to consult the catalogue. For the developer it means that smart software can be
developed supporting automated searches in distributed databases.

Within the project “Geoloketten” NLR developed eXcat. eXcat is a CSW server and a CSW
client, written in JAVA. Special about eXcat is that it is built on an XML database. This XML
database is the open source database system eXist, that uses web technology standards as XPath
and XQuery. These are beautiful and impressive terms, but what really matters is that with this,
a very easy-to-use system is developed allowing metadata in XML format (e.g. ISO
19115/19139), to be saved and searched for via the CSW standard. In addition, the metadata are

NLR-TR-2009-337

 6

presented to the user in an human-readable and uniform fashion. The CSW client too, has been
developed based on XQuery and can easily be integrated in existing websites.

Installation of the eXcat software consists of a few actions and without any further
configuration it will work “out-of-the-box” on Windows, Unix or Mac OSX platforms. It is also
quite easy for the user to add metadata in XML format to the database. With an administrator
program it is possible to read files from disk. The user has the option to create a folder structure
for better organisation of the files that are stored. Other administrators might prefer the use of
the WebDAV interface; the folders will then be displayed in the explorer, as if it were normal
folders of the system. Drag and drop can then be used to add or delete metadata files.

Using the CSW client, other CSW servers on internet can be queried as well and although the
CSW protocol supports that multiple servers are queried simultaneously, often “harvesting” of
data from other servers is preferred. Using the harvesting method metadata files from other
remote CSW servers are retrieved and saved in the local database. This harvest feature is
supported by the eXcat harvest module.

NLR-TR-2009-337

 7

Contents

1 Introduction 11

2 The CSW protocol 12
2.1 CSW-HTTP binding 12
2.2 GetRecords Request 13
2.2.1 CQL_TEXT examples 13
2.2.2 ogc:Filter examples 14
2.2.3 GetRecords examples (KVP and XML) 15

3 The eXist XML database 15
3.1 XPath 16
3.2 XQuery 16
3.3 eXist 16

4 eXcat CSW server and client 17
4.1 eXcat CSW server 17
4.2 eXcat integrated CSW client 17
4.3 eXcat CSW Javascript/AJAX client 18
4.4 eXcat Harvest module 18

5 Installation procedure eXcat 19
5.1 Installation 19
5.2 Adding metadata to the database 23
5.2.1 Use of the Admin client 23
5.2.2 Use of WebDAV 25
5.2.3 Use of the Harvest request 27
5.3 Installation Javascript/AJAX client 27

6 Advanced use of eXcat 31
6.1 Adapted configuration of eXcat 31
6.1.1 allow.xml 32
6.1.2 csw.properties 32
6.1.3 csw-hosts.xml 35
6.1.4 harvest.properties 36

NLR-TR-2009-337

 8

6.2 A second eXcat instantiation 37
6.3 Create and restore a backup 39
6.4 Use of OpenLayers viewer 39

References 40

NLR-TR-2009-337

 9

Abbreviations

AJAX Asynchronous JavaScript and XML
CQL Common Query Language
CSW Catalogue Services for the Web
GIS Geographic Information System
HTTP Hypertext Transport Protocol
KVP Key-Value Pair
NGII National Geo-Information Infrastructure
OGC Open Geospatial Consortium
RGI Ruimte voor Geo-Informatie (Space for Geo-Information)
RPC Remote Procedure Call
SOAP Simple Object Access Protocol
SQL Structured Query Language
URI Uniform Resource Identifier
URL Uniform Resource Locator
UTF Unicode Transformation Format
WebDAV Web-based Distributed Authoring and Versioning
XML Extensible Markup Language
XSL Extensible Stylesheet Language

NLR-TR-2009-337

 10

This page is intentionally left blank.

NLR-TR-2009-337

 11

1 Introduction

Within the framework of the national Bsik programme Space for Geo-information (RGI)
projects “Geoloketten (RGI-006)” and “A Remote Sensing Node within NGII (RGI-405)” the
National Aerospace Laboratory developed eXcat. eXcat is a very efficient tool for publishing
metadata using the standard for “Catalogue Services for Web” or CSW, which was developed
by the OpenGIS Consortium (OGC).

eXcat is written in Java and comprises a CSW server and a CSW Client. What makes that eXcat
stands out from similar software is that it is built on the open-source XML database system
eXist (http://exist.sourceforge.net), which uses web technology standards as XPath and XQuery.
Also the Geotools, the open source (LGPL) Java code library is used
(http://geotools.codehaus.org). eXcat is very easy to use and allows metadata to be saved in
XML format (e.g. ISO 19115/19139) and to be published and queried using the CSW standard.
It also presents the metadata conveniently (human-readable) and in a uniform way to the user.
Furthermore, a second CSW client based on Javascript and AJAX, was developed which can be
included in existing websites using a few simple steps.

The importance of metadata is widely recognized, however for everyone who has investigated
the matter thoroughly, it is known that generating and maintaining metadata is not the most
appealing task. Because of that, the way in which data is described often lacks consistency and
this doesn’t improve the exchangeability of the data. Fortunately, the geo-information field is
constantly moving: an unambiguous policy is being created with regard to standards and there is
a growing consciousness that metadata is indispensable. Meanwhile, it is becoming easier to
create metadata by the support of intelligent software tools.

When datasets have been provided with metadata in a correct manner, then the question arises
how to handle and use these metadata. Often the information is saved in a database and
sometimes there is an advanced way of searching this database for specific information.
Usually, each organisation will have its own optimal way to manage data and the corresponding
metadata. However, an important feature of metadata is that it helps users to find and share
datasets. Publishing metadata on internet is thus very important for the multiple use of valuable
geo-information.

In order to streamline this process, an interoperability standard was developed by the Open
Geospatial Consortium: “Catalogue Service for Web” or CSW in short. The CSW standard
describes how digital catalogues for geospatial data and services can be consulted. For the user,

http://exist.sourceforge.net/
http://geotools.codehaus.org/

NLR-TR-2009-337

 12

this means that it is not necessary to know how the underlying database is organized in order to
be able to consult the catalogue. For the developer it means that smart software can be
developed supporting automated searches in distributed databases.

2 The CSW protocol

The CSW protocol has been developed by OGC in order to explore databases via the web
without the need of having knowledge of the underlying structure of that database. This is
possible because the database comes with a (virtual) catalogue in standard format. As a result, it
is possible to search within the ISO 19139 metadata XML records without the need to know the
XML scheme. The catalogue provides a mapping between the agreed search terms (like Title,
Subject, AnyText, etc.) and the corresponding element or attribute within the XML scheme.
Currently, several updates of the specification have been published. The most relevant versions
are version 2.0.1 and 2.0.2. These versions differ only slightly from each other. Unless stated
otherwise, we only refer to CSW version 2.0.2 in this document.

2.1 CSW-HTTP binding
The communication between the client and the CSW server runs usually, but not necessarily,
via the HTTP protocol. There have been made agreements on how the messages between client
and server look like and the way in which they are sent. The messages that can be sent to a
server are:

- GetCapabilities (to get a description of the CSW server capabilities)
- DescribeRecords (to get a description of the underlying record structure)
- GetDomain
- GetRecords (to search for certain records)
- GetRecordById (to acquire a record on the basis of a unique identifier)
- Harvest (to tell to the CSW server to retrieve a remotely stored record and save it in the

database)
- Transaction

These messages can be packed in XML or in KVP (key-value pairs) format and can be sent via
HTTP GET as well as HTTP PUT requests.

The server always answers with one of the following XML messages:
- <csw:Capabilities>...</csw:Capabilities>

NLR-TR-2009-337

 13

- <csw:DescribeRecordResponse>...</csw:DescribeRecordResponse>
- <csw:GetRecordsResponse...</csw:GetRecordsResponse>
- <csw:GetRecordByIdResponse>...</csw:GetRecordByIdResponse>
- <csw:HarvestResponse>...</csw:HarvestResponse>
- <ows:ExceptionReport>...</ows:ExceptionReport>

The last answer above is an error message as a consequence of an incorrect formulated request.

For the sake of clarity, only the root element is shown of the XML document containing the
request and response of the aforementioned messages. The full definition of these messages can
be found in the CSW specification OGC 07-006r1 and OGC 07-045.

2.2 GetRecords Request
The GetRecords request is perhaps the most important request that can be sent to a CSW server.
It contains the criteria on which a selection of (metadata) records is being made. According to
the CSW protocol these criteria are provided in a so-called constraint. CSW enables two ways
in which such a constraint can be formulated:
- CQL_TEXT, an as text-string formatted Common Query Language statement
- FILTER, an XML formatted query

Besides constraint, there are many more request parameters defined like for instance, the
maximum number of records that are to be returned and the format and the scheme of these
records. For a comprehensive description, the reader is referred to document OGC 07-045.

2.2.1 CQL_TEXT examples
Hereafter, a couple of examples of the use of CQL_TEXT for the selection of metadata records
are presented.

1. All the records in which the string “water” appears are being searched for:

AnyText LIKE '%water%'

2. All the records in which the string “water” appears in the Title are being searched for:

Title LIKE '%water%'

3. All the records for which the Title starts with “water” are being searched for:

Title LIKE 'water%'

NLR-TR-2009-337

 14

4. All the records for which the string “water” appears in the Title are being searched for and for
which the geographical boundingbox coincides fully or partly with a certain area (here: the
Netherlands in latitude and longitude coordinates):

Title LIKE '%water%' AND BBOX(ows:BoundingBox, 3.19,50.67,7.26,53.59)

5. All the records for which the string “water” appears in the Title are being searched for and for
which the geographical boundingbox lies completely within a certain area: (here: the
Netherlands in latitude and longitude coordinates):

Title LIKE '%water%' AND WITHIN(ows:BoundingBox,ENVELOPE(3.19,7.26,53.59,50.67))

2.2.2 ogc:Filter examples
The examples 1 and 4 from the previous paragraph, expressed as FILTER in XML are:

1. All the records in which the string “water” appears are being searched for:
<ogc:Filter xmlns:xml="http://www.w3.org/XML/1998/namespace"

xmlns:gml="http://www.opengis.net/gml" xmlns:ogc="http://www.opengis.net/ogc"

xmlns="http://www.opengis.net/ogc">

 <ogc:PropertyIsLike escape="\" singleChar="_" wildCard="%">

 <ogc:PropertyName>AnyText</ogc:PropertyName>

 <ogc:Literal>%water%</ogc:Literal>

 </ogc:PropertyIsLike>

</ogc:Filter>

4. All the records for which the string “water” appears in the Title are being searched for and for
which the geographical boundingbox coincides fully or partly with a certain area (here: the
Netherlands in latitude and longitude coordinates) (namespace definitions omitted):
<ogc:Filter>

 <ogc:And>

 <ogc:PropertyIsLike escape="\" singleChar="_" wildCard="%">

 <ogc:PropertyName>Title</ogc:PropertyName>

 <ogc:Literal>%water%</ogc:Literal>

 </ogc:PropertyIsLike>

 <ogc:BBOX>

 <ogc:PropertyName>ows:BoundingBox</ogc:PropertyName>

 <gml:Envelope>

 <gml:lowerCorner>3.19 50.67</gml:lowerCorner>

 <gml:upperCorner>7.26 53.59</gml:upperCorner>

 </gml:Envelope>

 </ogc:BBOX>

 </ogc:And>

</ogc:Filter>

NLR-TR-2009-337

 15

2.2.3 GetRecords examples (KVP and XML)
A full GetRecords request may look like this:

KVP request with CQL_TEXT constraint:
http://localhost:8080/excat/csw?request=GetRecords&service=CSW

&version=2.0.2&namespace=xmlns(csw=http://www.opengis.net/cat/csw)

&resultType=results&outputSchema=http://www.opengis.net/cat/csw/2.0.2

&outputFormat=application/xml&maxRecords=10&typeNames=csw:Record

&elementSetName=summary&constraintLanguage=CQL_TEXT

&constraint_language_version=1.1.0

&constraint=AnyText+LIKE+%27%25water%25%27

XML request with FILTER constraint:
<?xml version="1.0" encoding="UTF-8"?>

<csw:GetRecords xmlns:csw="http://www.opengis.net/cat/csw/2.0.2" maxRecords="10"

outputFormat="application/xml"

 outputSchema="http://www.opengis.net/cat/csw/2.0.2" resultType="results"

service="CSW" version="2.0.2">

 <csw:Query typeNames="csw:Record">

 <csw:ElementSetName>summary</csw:ElementSetName>

 <csw:Constraint version="1.1.0">

 <ogc:Filter xmlns:ogc="http://www.opengis.net/ogc"

xmlns="http://www.opengis.net/ogc" xmlns:gml="http://www.opengis.net/gml">

 <ogc:PropertyIsLike escape="\" singleChar="_" wildCard="%">

 <ogc:PropertyName>AnyText</ogc:PropertyName>

 <ogc:Literal>%water%</ogc:Literal>

 </ogc:PropertyIsLike>

 </ogc:Filter>

 </csw:Constraint>

 </csw:Query>

</csw:GetRecords>

3 The eXist XML database

Metadata for geo-information (data and services) are described according to the ISO19115/9
and ISO19139 standards. The way in which these metadata are presented in XML is described
by the ISO19139 standard. Thus, metadata for geo-information are often XML formatted
documents. For metadata catalogues, usually relational databases are used which can be queried
using SQL searches. However, if XML files are saved in such relational databases, the
possibility to search on characteristics within the XML files is lost.

http://localhost:8080/excat/csw?request=GetRecords&service=CSW

NLR-TR-2009-337

 16

The use of an XML database offers therefore important advantages. The most important one is
that one can search within documents using XPath and XQuery. XPath and XQuery are
standards developed by the World Wide Web Consortium (W3C) and are used in many
applications.

3.1 XPath
XPath (see: http://www.w3.org/TR/xpath) is a language to indicate elements and attributes of an
XML document and it also offers the possibility to manipulate with text, numbers and booleans.
XPath is often used in XSL (stylesheet) transformations whereby an XML document is being
converted to another XML document according to the rules that are specified in an XSLT
document.

3.2 XQuery
XQuery (see: http://www.w3.org/TR/xquery) is a language designed to explore XML
documents in an intelligent and transparent way. It uses XPath to execute tests (queries) on
components of XML documents in order to retrieve XML fragments or whole documents from
a collection of XML documents.

3.3 eXist
eXist has been used as the underlying XML database for the development of eXcat. eXist (see:
http://exist.sourceforge.net) is an open-source database management system that is fully built on
XML technology and it supports the standards XPath and XQuery. This XML database is
written in Java and can be easily integrated in applications where XML is used. High
performance is achieved because a smart indexing scheme is being applied with which relations
(like: (parent-child, ancestor-descendant of previous-next) between fragments of the XML
documents can be determined quickly.

The eXist database consists of a number of important features of which a few are named here:
XQuery support, authorization mechanism, crash recovery, backup-restore functionality, and
more. Besides this, the following network protocols are supported: HTTP/REST, WebDAV,
SOAP and XML-RPC.
For the eXist database, an Admin client is also available, giving simple access to the database
and with which the structure, documents and user rights can be managed. With this client a
backup of the XML documents can be made and an existing backup can be restored.

http://www.w3.org/TR/xpath
http://exist.sourceforge.net/

NLR-TR-2009-337

 17

4 eXcat CSW server and client

4.1 eXcat CSW server
Just like eXist, eXcat has been developed in Java and operates in a servlet-engine like Tomcat.
In eXcat, the CSW protocol for the "ISO 19115 Application Profile for Metadata" has been
implemented. This means that standardized CSW requests are handled by eXcat and responses
conforming the CSW standard are being returned. These requests are mostly search requests for
the metadata database. The following CSW requests are being supported:
- GetCapabilities
- DescribeRecords
- GetRecords
- GetRecordById
- Harvest

All requests can be sent to the eXcat CSW server as HTTP GET request as well as HTTP PUT
requests.
Because eXcat is developed on the eXist XML database, all the interfaces supported by eXist
are available, e.g. REST, SOAP, XML-RPC and WebDAV interfaces. The standard Admin
client of eXist can be used for managing the metadata (in ISO 19139 XML format).

4.2 eXcat integrated CSW client
An XQuery based CSW client has been developed. This client is available via a web browser,
and is intended to be used by mainly experts in the field of CSW. The client offers possibilities
to query the eXcat server and other remote CSW servers. Thereby, it is possible to formulate a
query in CQL_TEXT which is sent as CQL_TEXT or as ogc:FILTER. [Remark: in the eXcat
software, the Geotools library is used for the translation of CQL to ogc:FILTER (see:
http://geotools.codehaus.org)] Besides this, the request method (GET or POST) and the request
format (KVP or XML) can be selected. Other parameters which can be configured by the user
are: version, resultType, maxRecords, outputSchema, ElementSetName and SortBy.

The client also offers exercise possibilities in the use of filters. The as CQL_TEXT entered
constraint can be presented as the corresponding ogc:Filter XML representation and as a
XQuery expression.

It is also possible to control the Harvest module from the same browser client, which is
implemented as a separate servlet (independent of the eXcat CSW server). This control is very

http://geotools.codehaus.org/

NLR-TR-2009-337

 18

simple and consists only of starting, monitoring and stopping of the harvest process for selected
remote CSW servers.

4.3 eXcat CSW Javascript/AJAX client
Because the aforementioned CSW client is built up by so-called xql pages, which are only
usable in a servlet engine like Tomcat, this client is not usable within just an arbitrary web site.
Because of that, a client based on Javascript and AJAX was developed, which can be fitted
easily into to existing web pages. The client is also easier to use: the user has the possibility to
enter a search term on the basis of which the whole text (AnyText), just the Title or just the
Subject is searched. Knowledge of CQL_TEXT or FILTER constraints is not required. In order
to let the client communicate with remote servers, a proxy is necessary. For security reasons,
browsers don’t allow the exchange of XML messages via Javascript with servers other than the
one from which the pages are loaded. Via a simple proxy, in this case written in PHP, this
limitation can be surpassed.

4.4 eXcat Harvest module
An independent Harvest module is made available. Harvesting is the process of collecting
metadata records from remote locations and storing these records in a local database. Usually,
these metadata records are retrieved from different remote CSW servers but the records may
also be retrieved from a local file system.

Harvesting is often used as an alternative for distributed search actions where a search to a CSW
server is passed by that server to another server and the results are collected. In practice, this
procedure does not always works efficiently because servers might be irresponsive and
consequently the whole search process is slowed down. In addition, it is often difficult to sort
the collected records before sending the result to the user. With one database containing all the
collected data, these problems don’t exist. However, the disadvantage is that it is not sure
whether or not the harvested records are still up-to-date. By frequently executing the Harvest
process and because in practice metadata are not updated very often, this disadvantage needs not
to be of great importance.

The current eXcat Harvest module works semi-automated and has to be started manually by the
user. After the metadata are collected on the file system, the records are presented to the eXcat
CSW server one by one via the standard CSW Harvest request. The advantage of this is that the
Harvester is also capable of operating in combination with any other CSW server supporting the
Harvest request method.

NLR-TR-2009-337

 19

It is the task of the CSW server to determine if and how the record will be saved. The standard
way of operating of the eXcat CSW server is that metadata already present in the database
(based on the unique file identifier) are not stored. Replacing existing metadata records only
takes place if the metadata comes from the same remote CSW server. This prevents duplication
of records collected from multiple CSW servers.

5 Installation procedure eXcat

5.1 Installation
The eXcat software is available as a so-called Java war-file. This makes the installation very
easy. The whole procedure consists of three steps.

Step 1: Installation of the software
Copying the file excat.war to the directory $CATALINA_HOME/webapps is sufficient.
[$CATALINA_HOME is the directory where Tomcat is installed. In Windows, this is usually
C:\Program Files\Apache Software Foundation\Tomcat 5.5.] When Tomcat is started, the file
excat.war will be unpacked automatically and all files will be placed in the directory
$CATALINA_HOME/webapps/excat. A new and empty XML database is generated
automatically. The directory structure is shown in figure 1. A description of the folders follows
below.

NLR-TR-2009-337

 20

Fig.1 Folder structure of the eXcat web application

css: contains the css stylesheets which determine the lay-out of the client .
doc: contains a number of documents with background information.
images: contains images used for the lay-out of the client webpages.
scripts: contains the excat.js and prototype.js javascript files. Javascript is used by the client
in order to solve the “back-button” problem. Dynamically modified pages give the impression
of a freshly loaded page, but in fact, they are not. Because of that, the browser back-button
cannot be used to go to the previous page. With some Javascript code however, it is still
possible to apply this intuitive method.
META-INF: is a standard directory in web-applications in which, among other things, the
automatic reloading of the applications is controlled.
WEB-INF: contains all the help files and other files which remain hidden for the web user. This
directory contains the following subdirectories:

WEB-INF/bin: contains the program to start the Admin client of the eXist XML (Unix and
Windows versions).
WEB-INF/classes: contains the configuration file for the log-messages.
WEB-INF/conf: contains the eXcat configuration files (see hereafter).
WEB-INF/data: contains the eXist database files.

NLR-TR-2009-337

 21

WEB-INF/harvest: contains the (temporary) XML metadata records which are retrieved by
the Harvest module from remote CSW servers.
WEB-INF/lib: all Java jar libraries.
WEB-INF/log: the various log-files
WEB-INF/xml: some XML-files: capabilities, describerecord and a sample metadata record.
WEB-INF/xsl: XSL stylesheets for the CSW client and for the server. Transformation from
XML to another XML format are defined by these stylesheets. XSL stylesheets for transforming
ISO19139 records to Dublin Core format are located here as well.

Step 2: Check the correct functioning
The eXcat web application is readily available. Browse to http://localhost:8080/excat and the
main page of eXcat becomes visible (see Fig. 2). It is assumed that Tomcat is configured on port
8080. This is the standard setting. If this is changed, of course a different port number has to be
used.

Fig. 2 eXcat client main page

Step 3: Install sample record
Go from the main page to CSW Client. A search form appears (see Fig. 3). Don’t fill in
anything but press the “Submit” button. Now, one metadata record will be found, namely the
description of eXcat in ISO19139 format (see Fig. 4). This record is saved automatically in the
XML database if a search is formulated and there are no records in the database yet. The XML

http://localhost:8080/excat

NLR-TR-2009-337

 22

response received from the server can be shown by clicking the "XML-tab". If the record is
selected (by clicking on the title or on “more”) a human-readable representation of the file is
shown. Again, the “XML-tab” gives the possibility to look at the raw XML response of the
server.

Fig. 3 eXcat client search form

NLR-TR-2009-337

 23

Fig. 4 eXcat metadata search result

5.2 Adding metadata to the database
The newly installed software is now ready for use and metadata records can be added. There are
three ways to offer metadata to the CSW server:
1: using the Admin client
2: using the WebDAV protocol
3: using the Harvest request

5.2.1 Use of the Admin client
The Admin client provided together with the eXist database, offers a practical method for
adding metadata records. It allows the user to save data in an organized and orderly manner
using a folder structure.

The Admin client is a Java application which can be started by executing the program client.bat
(Windows) or client.sh (Unix, OSX) from the WEB-INF/bin directory. Next, a couple of
informative messages will appear, but they can be ignored. The login screen (see Fig. 5) appears
and it is sufficient to press the “OK” button.
 [Remark: One also has the possibility here, to change the URL and to choose a different
address. Furthermore, addresses of other eXist databases can be saved and added to the list of
favourites.]

NLR-TR-2009-337

 24

The client now shows the underlying database structure as a folder structure. In Fig. 6, the
meaning of the buttons on top of the screen is described.

Fig. 5 eXist Admin client login screen

Two folders are visible: csw and system. It is recommended to ignore the folder system and
double-click on csw to enter the folder. Inside csw, a folder excat is visible in which the
example record excat.xml is stored. [Note: this sample record is stored when the CSW server is
accessed from the browser for the first time; see above.] This record can be shown in an editing
pane by just double-clicking. In principle, the shown file can now be modified, but this is not
advised for proper management of the metadata. It is recommended to modify metadata outside
the database environment since the database will often contain just a copy of the original
metadata record, the original being kept close to the data it describes.

It is recommended to introduce some structure to the way in which metadata are being saved
and to create a new folder inside the csw folder. This can be done using button 3 (see Fig. 6). Go
into the new folder (double click) and use button 4 (see Fig. 6) in order to add new files. A new
window is opened (Fig. 7) in which the XML-files that one wants to add can be selected. From
the eXcat client (in the browser) the files can be immediately found and made visible.

NLR-TR-2009-337

 25

Fig. 6 eXist Admin main screen

Fig. 7 Adding metadata using the eXist client

5.2.2 Use of WebDAV
WebDAV is a protocol with which files on a server can be made accessible as if they were on
the file system of the local computer. eXist supports this protocol by which the content of the
database can be made accessible as a folder with files.
Important: the file WEB_INF/web.xml should contain the following section:

NLR-TR-2009-337

 26

 <servlet>

 <servlet-name>WebDAVServlet</servlet-name>

 <servlet-class>org.exist.http.servlets.WebDAVServlet</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>WebDAVServlet</servlet-name>

 <url-pattern>/webdav/*</url-pattern>

 </servlet-mapping>

In Windows, the eXist database can be attached as a network folder using the following
procedure:
1. Go via My Computer to My Network Places (or use the explorer to show My Network
Places) and click with the right mouse button on open. Next choose Add a network place in
the upper left corner of the sidebar.
2. The window that opens is the Add Network Place Wizard. Click on Next.
3. On the next page enter the URL of the WebDAV folder in the field Internet or network
address. Example:
http://localhost:8080/excat/webdav and click on Next.

4. By default the eXist database is protected with a username and password. Enter the name
 (default: admin) and password (default: empty) and click on OK.
5. Now, enter the name of this folder (e.g. eXcat webdav localhost) - this name will appear in
the list of My Network Places (see Figure 8).
6. Finally, click on Finish on the next page.

Fig. 8 eXcat as web folder (via WebDAV)

New folders and XML metadata files can now be added or deleted. However, it is not possible
to modify the files, which is not recommended anyway (see discussion above).

http://localhost:8080/excat/webdav

NLR-TR-2009-337

 27

5.2.3 Use of the Harvest request
Theoretically the use of the Harvest request also offers the possibility to place XML files in the
CSW server, but this method has to be considered as an expert method. For the sake of
completeness, this method is described here.

When the metadata file my-metadata.xml is located in the folder WEB-INF/harvest/my-xml,
than the eXcat CSW server will accept the following KVP request (via HTTP-GET):
http://localhost:8080/excat/csw?request=Harvest&service=CSW

&version=2.0.2&namespace=xmlns(csw=http://www.opengis.net/cat/csw)

&source=my-xml/my-metadata.xml

&resourceFormat=application/xml

&resourceType=http://www.isotc211.org/2005/gmd

&collection=my-xml

The same request in XML (via HTTP-POST) looks like this:
<?xml version="1.0" encoding="UTF-8"?><csw:Harvest

xmlns:csw="http://www.opengis.net/cat/csw/2.0.2" service="CSW" version="2.0.2">

 <csw:Source>my-xml/my-metadata.xml</csw:Source>

 <csw:ResourceType>http://www.isotc211.org/2005/gmd</csw:ResourceType>

 <csw:ResourceFormat>application/xml</csw:ResourceFormat>

 <csw:Collection>my-xml</csw:Collection>

</csw:Harvest>

Remark 1: the parameter collection is not standard and is being used by eXcat to place the file
in a specific folder (here: my-xml). The Harvest module uses this method to store metadata in a
dedicated folder using the unique id of the remote server (see the csw configuration file) as the
collection name.
Remark 2: the parameter source is a URI and can also have the following form:

source=file:/C:\Documents and Settings\Desktop\my-metadata.xml

When the protocol specification (here: file:/) is missing than the path is relative with respect to
WEB-INF/harvest. This standard path can be modified in the configuration file (see later).

5.3 Installation Javascript/AJAX client
Besides the integrated eXcat CSW (expert) client, also a simple client was developed based on
of Javascript and AJAX. This client can easily be integrated in existing HTML pages by adding
the HTML code below into the page and by saving the source files according to the folder
structure in figure 9.

http://localhost:8080/excat/csw?request=Harvest&service=CSW

NLR-TR-2009-337

 28

Fig. 9 Folder structure Javascript/AJAX CSW client

The HTML code consists of references to a css-stylesheet (cswclient.css), to three javascript
libraries (sarissa.js, sarissa_ieemu_xpath.js and cswclient.js) and a <div> section with the
Javascript code that places the CSW client in the page.

<link rel="stylesheet" type="text/css" href="lib/css/cswclient.css"/>

<script type="text/javascript" src="./lib/scripts/sarissa.js"></script>

<script type="text/javascript" src="./lib/scripts/sarissa_ieemu_xpath.js"></script>

<script type="text/javascript" src="./lib/scripts/cswclient.js"></script>

<div class="csw-wrapper" id="csw-wrapper" style="width:80%">

 <script type="text/javascript">

 var csw_client = new CSWClient();

 csw_client.writeClient("csw-wrapper");

 </script>

</div>

This is the standard method, where the client offers access to the CSW servers defined in the
configuration file lib/xml/cswclient.xml. In order to get access to remote CSW servers with
AJAX, the use of a proxy is necessary. A PHP proxy is used (csw-proxy.php) which implies that
the web-server (like Apache) has to support the use of PHP. [Important: standard installations
of PHP require that the Curl extension is activated by removing the comment (;) character from
the php.ini configuration file.]
Optionally, the CSW client can also be initialized using one of the following ways:

1. Use only http://some-csw-server/excat/csw as CSW host and csw-proxy.php can be found in
http://my-host/some/path (instead of in the standard path):

var csw_client = new CSWClient("http://some-csw-server/excat/csw",”http://my-

host/some/path”);

http://some-csw-server/excat/csw
http://my-host/some/path

NLR-TR-2009-337

 29

2. Use only http://some-csw-server/excat/csw as CSW host and csw-proxy.php can be found in
the standard path:

var csw_client = new CSWClient("http://some-csw-server/excat/csw");

3. Use only http://my-host/excat/csw as CSW host (on the same server and port with which the
HTML pages are loaded with the CSW client) and a proxy is not necessary:

var csw_client = new CSWClient("http://my-host/excat/csw");

csw_client.useProxy(false);

Examples of the eXcat Javascript CSW client are shown in figure 10, figure 11 and figure 12.

Fig. 10 Search result Javascript CSW client

http://some-csw-server/excat/csw
http://my-host/excat/csw

NLR-TR-2009-337

 30

Fig. 11 Metadata presentation in Javascript CSW client

NLR-TR-2009-337

 31

Fig. 12 eXcat CSW client in GDSC site

6 Advanced use of eXcat

In the next sections, it is described how eXcat can be configured when the standard settings
don’t suffice. These modifications are reserved for the administrator of the eXcat installation
and some background knowledge of the CSW protocol is required.

6.1 Adapted configuration of eXcat
The standard configuration of eXcat can be changed by modifying a number of configuration
files. These files are in the eXcat web application in the WEB-INF/conf folder: allow.xml,
csw.properties, csw-hosts.xml, harvest.properties.

NLR-TR-2009-337

 32

6.1.1 allow.xml
This XML file controls which hosts have access to the Harvest procedure via the eXcat client.
The file contains the IP addresses of the machines from where one may run a Harvest process.
The CSW server uses the same information when a Harvest request is sent to the CSW server.
Machines not appearing in the list cannot see the options Harvest and CQL Test in the main
page of the CSW client. Also the Harvest requests coming from these machines are not
answered by the CSW server.

An example of this file:
<?xml version="1.0" encoding="ISO-8859-1"?>

<harvest>

 <allow host="127.0.0.1" />

 <allow host="137.17.2.14" />

</harvest>

6.1.2 csw.properties
An example of this file csw.properties is shown hereafter. The most important parameters which
and administrator might want to change are:

csw.xmldb.uri: the URI of the eXist database; in principle, this can be on a different machine
than the one on which the eXcat servlet is installed.
csw.capabilities.file: the name of the capabilities document in case that the standard file is not
being used.
csw.describerecord.file: the name of the describerecord document in case that the standard file
is not being used.
csw.xmldb.admin: the username required to get access to the eXist database.
csw.xmldb.admin.password: the password required to get access to the eXist database.
csw.harvest.base.uri: this is the base URI from which the CSW server loads the XML files
during the Harvest process (if no absolute URI is given in the source parameter).
csw.xquery.collection.schema: this is an important parameter. Even though every type of XML
file can be saved in the eXist database, using the CSW protocol it is only possible to search for
one specific type of document at the time. This relates to the unique mapping of so-called
queryables to the corresponding fragments in the XML document. Even though the XML
scheme for the ISO19115 metadata is determined by the ISO19139 standard, in practice there
are also other metadata schemes. (For example the ESRI scheme for ISO19115 or the Dublin
Core metadata scheme)
By the parameter csw.xquery.collection.schema the scheme is defined which is actually used by
the CSW server. The value of this parameter is used in the mapping definition. So if

NLR-TR-2009-337

 33

csw.xquery.collection.schema = iso19139 than the mapping is defined by the parameters
csw.xquery.iso19139.xxx (where xxx=subject|title|abstract|...). In principle, the administrator has
also the possibility to define his own mapping by mapping a parameter of his choice on a XML
fragment.

National Aersospace Laboratory, NLR

Rob van Swol (vanswol@nlr.nl)

September 2007

@(#)csw.properties

xmldb database parameters

user, password may be left blank or set to guest/guest

csw.xmldb.driver = org.exist.xmldb.DatabaseImpl

#csw.xmldb.uri = xmldb:exist://localhost:8080/excat/xmlrpc

csw.xmldb.uri = xmldb:exist://

csw.xmldb.collection = /db/csw

csw.xmldb.user =

csw.xmldb.password =

optional file name of capabilities document (in WEB-INF/xml)

default = capabilities.xml

#csw.capabilities.file = my-capabilities.xml

optional file name of describerecord document (in WEB-INF/xml)

default = describerecord.xml

#csw.describerecord.file = my-describerecord.xml

for harvesting administrator and password must be set!

csw.xmldb.admin = admin

csw.xmldb.admin.password =

harvest base uri (should end with a slash(/) !)

default = file:///pathtocontext/WEB-INF/harvest/

#csw.harvest.base.uri = file:///somepath/to/harvestdir/

here we select the xml files in the database based on their format

#csw.xquery.collection.schema = iso19115

csw.xquery.collection.schema = iso19139

ESRI ISO 19115

csw.xquery.iso19115.collection = //Metadata

mapping paths are relative to collection

NLR-TR-2009-337

 34

csw.xquery.iso19115.mapping.subject = /dataIdInfo/descKeys/keyword

csw.xquery.iso19115.mapping.title = /dataIdInfo/idCitation/resTitle

csw.xquery.iso19115.mapping.abstract = /dataIdInfo/idAbs

csw.xquery.iso19115.mapping.anytext = /*

csw.xquery.iso19115.mapping.format =

/dataIdInfo/idCitation/presForm/PresFormCd/@value

csw.xquery.iso19115.mapping.identifier = /mdFileID

#csw.xquery.iso19115.mapping.modified = /mdDateSt

#csw.xquery.iso19115.mapping.modified = /dataIdInfo/idCitation/resRefDate/refDate

csw.xquery.iso19115.mapping.type = /mdHrLv/ScopeCd/@value

csw.xquery.iso19115.mapping.boundingbox = /dataIdInfo/geoBox/westBL,\

 /dataIdInfo/geoBox/southBL,\

 /dataIdInfo/geoBox/eastBL,\

 /dataIdInfo/geoBox/northBL

ISO 19139

csw.xquery.iso19139.collection = //gmd:MD_Metadata

mapping paths are relative to collection

csw.xquery.iso19139.mapping.subject =

/gmd:identificationInfo/gmd:MD_DataIdentification/gmd:descriptiveKeywords/gmd:MD_Keyword

s/gmd:keyword

csw.xquery.iso19139.mapping.title =

/gmd:identificationInfo/gmd:MD_DataIdentification/gmd:citation/gmd:CI_Citation/gmd:title

csw.xquery.iso19139.mapping.abstract =

/gmd:identificationInfo/gmd:MD_DataIdentification/gmd:abstract

csw.xquery.iso19139.mapping.anytext = /*

csw.xquery.iso19139.mapping.format =

/gmd:distributionInfo/gmd:MD_Distribution/gmd:distributionFormat/gmd:MD_Format/gmd:name

csw.xquery.iso19139.mapping.identifier = /gmd:fileIdentifier

csw.xquery.iso19139.mapping.modified = /gmd:dateStamp/gco:Date

csw.xquery.iso19139.mapping.type =

/gmd:hierarchyLevel/gmd:MD_ScopeCode/@codeListValue

csw.xquery.iso19139.mapping.boundingbox =

/gmd:identificationInfo/gmd:MD_DataIdentification/gmd:extent/gmd:EX_Extent/gmd:geographi

cElement/gmd:EX_GeographicBoundingBox/gmd:westBoundLongitude,\

/gmd:identificationInfo/gmd:MD_DataIdentification/gmd:extent/gmd:EX_Extent/gmd:geographi

cElement/gmd:EX_GeographicBoundingBox/gmd:southBoundLatitude,\

/gmd:identificationInfo/gmd:MD_DataIdentification/gmd:extent/gmd:EX_Extent/gmd:geographi

cElement/gmd:EX_GeographicBoundingBox/gmd:eastBoundLongitude,\

/gmd:identificationInfo/gmd:MD_DataIdentification/gmd:extent/gmd:EX_Extent/gmd:geographi

cElement/gmd:EX_GeographicBoundingBox/gmd:northBoundLatitude

NLR-TR-2009-337

 35

extra queryables

csw.xquery.iso19139.mapping.creator =

/gmd:identificationInfo/gmd:MD_DataIdentification/gmd:pointOfContact/gmd:CI_ResponsibleP

arty[gmd:role/gmd:CI_RoleCode/@codeListValue = "originator"]/gmd:organisationName

csw.xquery.iso19139.mapping.relation =

/gmd:identificationInfo/gmd:MD_DataIdentification/gmd:supplementalInformation

6.1.3 csw-hosts.xml
The configuration file csw-hosts.xml is used by the eXcat client as well as by the Harvest
module. The file contains a list of CSW servers which can be queried from the client.
An example is listed below:

<hosts>

 <host id="LOCAL" harvest="no">

 <name>localhost</name>

 <url>http://localhost:8080/excat/csw</url>

 </host>

 <host id="GROEN" harvest="no" method="get">

 <name>groene omgeving</name>

 <url>http://www.groene-omgeving.nl/aimscsw/csw2.0</url>

 </host>

 <host id="NLR" harvest="no">

 <name>eXcat@nlr</name>

 <url>http://geomatics.nlr.nl/excat/csw</url>

 </host>

 <host id="TNO" maxrecords="1" keepfiles="true" harvest="yes">

 <name>eXcat@tno</name>

 <url>http://dinolks03.nitg.tno.nl/excat/csw</url>

 </host>

 <host id="MNP" harvest="yes" method="post" maxrecords="-1" keepfiles="false"

 overwrite="false" support-hits="false">

 <name>mnp-CSW2.0</name>

 <url>http://mapserver.mnp.nl/aimscsw/csw2.0</url>

 <constraint language="FILTER">Title LIKE '%'</constraint>

 </host>

 <host id="GEONOVUM" harvest="no">

 <name>Geonovum</name>

 <url>http://geonovum.nitg.tno.nl/geonetwork/srv/en/csw</url>

 </host>

</hosts>

NLR-TR-2009-337

 36

For each CSW server (within the xml element host) a name and address are specified by the xml
elements name and url, respectively The host-element may contain the following attributes:

Mandatory attributes:
Id: a unique identifier
Optional attributes:
Harvest: "yes|no" (default=no => this host cannot be harvested)
Method: "post|get" (default=post => http request method)
Maxrecords: negative|positive value (negative means that all records are harvested)
Keepfiles: "true|false" (default=false => the files in the harvest folder are not saved after they
have been stored in the database)
Overwrite: "true|false" (default=false => files already present in the database are not saved
(based on the fileID))
support-hits: "true|false" (default=true => use resultType=hits only for requesting the number
of records; this value has to equal false for an ESRI-type server because this server doesn’t
return the parameter numberOfMatchingRecords).

Optionally, the element constraint can be added containing a constraint (in CQL_TEXT format)
to be used when harvesting metadata records. Thereby, the following optional attribute can be
used:
language: "FILTER|CQL_TEXT" (default=FILTER => constraint language)

6.1.4 harvest.properties
The file harvest.properties only knows two parameters. With harvest.base.path one can change
the path under which the received files are (temporarily) saved and with harvest.csw.host the
address of the collecting CSW server is defined.

@(#)harvest.properties

file path where metadata records are stored

default = /WEB-INF/harvest/

harvest.base.path = /some/path/to/harvest/directory

csw host where harvested records are stored

harvest.csw.host = http://localhost:8080/excat/csw

http://localhost:8080/excat/csw

NLR-TR-2009-337

 37

6.2 A second eXcat instantiation
In the previous section it was mentioned that the eXist database knows no limitations with
regard to using different XML schemes, but the eXcat software does have this limitation. It is
only possible to search for one type of metadata at a time. However, it is possible to deploy two
different instantiations of eXcat simultaneously both using the same database. To this end, the
following steps have to be taken (where we will call the second instantiation atlas):

1. Define and initiate a servlet via the configuration file WEB-INF/web.xml. This servlet is
called via http://localhost:8080/excat/atlas.
 <servlet>

 <servlet-name>

 AtlasServlet

 </servlet-name>

 <servlet-class>

 nl.nlr.geomatics.csw.CSWServlet

 </servlet-class>

 <!--load-on-startup>1</load-on-startup-->

 <init-param>

 <param-name>csw.conf</param-name>

 <param-value>/WEB-INF/conf/atlas.properties</param-value>

 </init-param>

 </servlet>

 <servlet-mapping>

 <servlet-name>AtlasServlet</servlet-name>

 <url-pattern>/atlas</url-pattern>

 </servlet-mapping>

2. Create a configuration file (e.g. atlas.properties) containing the definition of the mapping of
the metadata and an adapted reference to the capabilities document.
@(#)csw.properties

xmldb database parameters

user, password may be left blank or set to guest/guest

csw.xmldb.driver = org.exist.xmldb.DatabaseImpl

#csw.xmldb.uri = xmldb:exist://localhost:8080/excat/xmlrpc

csw.xmldb.uri = xmldb:exist://

csw.xmldb.collection = /db/csw

csw.xmldb.user =

csw.xmldb.password =

optional file name of capabilities document (in WEB-INF/xml)

default = capabilities.xml

http://localhost:8080/excat/atlas

NLR-TR-2009-337

 38

csw.capabilities.file = atlas-capabilities.xml

optional file name of describerecord document (in WEB-INF/xml)

default = describerecord.xml

for harvesting administrator and password must be set!

csw.xmldb.admin = admin

csw.xmldb.admin.password =

harvest base uri (should end with a slash(/) !)

default = file:///pathtocontext/WEB-INF/harvest/

#csw.harvest.base.uri = file:///somepath/to/harvestdir/

harvest base uri (should end with a slash(/) !)

default = file:///pathtocontext/WEB-INF/harvest/

#csw.harvest.base.uri = file:///somepath/to/harvestdir/

here we select the xml files in the database based on their format

csw.xquery.collection.schema = dublin-core

DC

csw.xquery.dublin-core.collection = //simpledc

mapping paths are relative to collection

csw.xquery.dublin-core.mapping.subject = /dc:subject

csw.xquery.dublin-core.mapping.title = /dc:title

csw.xquery.dublin-core.mapping.abstract = /dct:abstract

csw.xquery.dublin-core.mapping.anytext = /*

csw.xquery.dublin-core.mapping.format = /dc:format

csw.xquery.dublin-core.mapping.identifier = /dc:identifier

csw.xquery.dublin-core.mapping.modified = /dct:modified

csw.xquery.dublin-core.mapping.type = /dc:type

csw.xquery.dublin-core.mapping.boundingbox = /ows:BoundingBox

3. Create an adapted capabilities document and place it as atlas-capabilities.xml in WEB-
INF/xml.

4. Add the Atlas host to csw-hosts.xml in order to make the server visible in CSW client.
 <host id="ATLAS" harvest="no">

 <name>localhost</name>

 <url>http://localhost:8080/excat/atlas</url>

 </host>

NLR-TR-2009-337

 39

6.3 Create and restore a backup
The eXist client offers the possibility to make a backup of the database. When the client is
started from the WEB-INF/bin folder one can use buttons 7 and 8 (see Fig. 6) to make a backup
and restore a backup, respectively. If a backup is made, a compressed (zip) file is automatically
generated with the name eXist-backup.zip. The location (folder) can be chosen. To restore such
a backup, the file first has to be un-zipped. This will result in a new folder db. The file
db/__contents__.xml can now be read and the whole structure in the folder db is automatically
recovered in the database.

6.4 Use of OpenLayers viewer
When the metadata contains references to layers which can be made visible in a WMS client, it
is possible to link the metadata presentation in the CSW client to the supplied OpenLayers
viewer. This will work on the condition that in the XML metadata element
MD_DigitalTransferOptions the URL, the protocol (OGC-WMS) and the name of the layer are
defined. Expert users might want to make modifications in the XSL stylesheet WEB-
INF/xsl/metadata-iso19139.xsl in order to make it work with another viewer. The OpenLayers
viewer is installed as web application by the placing the file viewer.war in the folder webapps of
Tomcat.

Fig. 13 OpenLayers viewer example

NLR-TR-2009-337

 40

References

[1] OpenGIS Catalogue Service Specification, version 2.0.2, OGC 07-006r1, Open
Geospatial Consortium Inc., 2007-02-23.

[2] OpenGIS Catalogue Service Specification 2.0.2 – ISO Metadata Application Profile,
OGC 07-045, Open Geospatial Consortium Inc., 2007-07-19.

[3] eXist, Open Source Native XML Database, http://exist.sourceforge.net.
[4] Geotools, The Open Source Java GIS Toolkit, http://geotools.codehaus.org.
[5] XML Path Language (XPath), http://www.w3.org/TR/xpath.
[6] XQuery 1.0: An XML Query Language, http://www.w3.org/TR/xquery.
[7] OpenLayers, Free Maps for the Web, http://www.openlayers.org.
[8] Nederlands profiel op ISO 19115 voor geografie, versie 1.2, Geonovum, december 2008.

http://exist.sourceforge.net/
http://geotools.codehaus.org/
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xquery
http://www.openlayers.org/

	1 Introduction
	2 The CSW protocol
	2.1 CSW-HTTP binding
	2.2 GetRecords Request
	2.2.1 CQL_TEXT examples
	2.2.2 ogc:Filter examples
	2.2.3 GetRecords examples (KVP and XML)

	3 The eXist XML database
	3.1 XPath
	3.2 XQuery
	3.3 eXist

	4 eXcat CSW server and client
	4.1 eXcat CSW server
	4.2 eXcat integrated CSW client
	4.3 eXcat CSW Javascript/AJAX client
	4.4 eXcat Harvest module

	5 Installation procedure eXcat
	5.1 Installation
	5.2 Adding metadata to the database
	5.2.1 Use of the Admin client
	5.2.2 Use of WebDAV
	5.2.3 Use of the Harvest request

	5.3 Installation Javascript/AJAX client

	6 Advanced use of eXcat
	6.1 Adapted configuration of eXcat
	6.1.1 allow.xml
	6.1.2 csw.properties
	6.1.3 csw-hosts.xml
	6.1.4 harvest.properties

	6.2 A second eXcat instantiation
	6.3 Create and restore a backup
	6.4 Use of OpenLayers viewer

